RESEARCH ARTICLE
Implications of Genetic Polymorphisms in Inflammation-Induced Atherosclerosis
Jayashree Shanker1, *, Vijay V Kakkar1, 2
Article Information
Identifiers and Pagination:
Year: 2010Volume: 4
First Page: 30
Last Page: 37
Publisher ID: TOCMJ-4-30
DOI: 10.2174/1874192401004010030
Article History:
Received Date: 3/11/2009Revision Received Date: 17/11/2009
Acceptance Date: 7/12/2009
Electronic publication date: 23/2/2010
Collection year: 2010

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
Inflammation is the mainstay of atherosclerosis and is an important governing factor at all stages of the disease process from lesion formation to plaque build-up and final end-stage rupture and thrombosis. An overview of the numerous clinico-epidemiological studies on the association between inflammatory gene polymorphisms and Cardiovascular disease (CVD) and its co-morbidities have shown that the risk associated with any single genotype is modest while the haplotypes, especially those defined on the basis of tag-SNP approach, have better coverage of the gene and show moderately higher impact on disease risk. Nevertheless, even these associations have been inconsistent with low cross-race repeatability. This has been attributed to many plausible causes such as clinical heterogeneity, sample selection criteria, variable genetic landscapes across different ethnic groups, confounding effect of co-morbidities etc. On the other hand, unbiased studies such as the family-based linkage and case-control based associations that have taken into account, thousands of genotypic markers spanning the whole genome, have had the ability to identify novel genetic loci for coronary artery disease. These studies have shown that many inflammatory genes are involved in the regulation of specific biomarkers of inflammation that collectively contribute to the disease-associated risk. In addition, there appears to be considerable cross talk between the different biochemical and metabolic processes. Therefore, consideration of all these factors can build towards an ‘atherosclerotic bionetwork’ that can refine our quest for developing a robust risk stratification tool for cardiovascular disease.