RESEARCH ARTICLE
Regulation of Inducible Nitric Oxide Synthase (iNOS) and its Potential Role in Insulin Resistance, Diabetes and Heart Failure
Sanja S Soskić1, Branislava D Dobutović1, Emina M Sudar1, Milan M Obradović1, Dragana M Nikolić1, Jelena D Djordjevic2, Djordje J Radak3, Dimitri P Mikhailidis4, Esma R Isenović1, *
Article Information
Identifiers and Pagination:
Year: 2011Volume: 5
First Page: 153
Last Page: 163
Publisher ID: TOCMJ-5-153
DOI: 10.2174/1874192401105010153
Article History:
Received Date: 25/5/2011Revision Received Date: 30/5/2011
Acceptance Date: 31/5/2011
Electronic publication date: 7/7/2011
Collection year: 2011

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.