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Abstract: Introduction: The accurate and reproducible assessment of cardiac volumes, function, and mass is of paramount 

importance in cardiology. In the present study we sought to determine whether the 3D cine-magnetic resonance (MR) 

technique, using the variable asymmetric sampling in time (VAST) approach, provided an accurate assessment of LV 

functional parameters when compared with the conventional 2D cine-MR technique.  

Methods: A total of 43 consecutive patients referred for a CMR examination for clinical reasons and 14 healthy volunteers 

were included in the study. Cine images were acquired using a steady-state free precession pulse sequence. Two different 

multiphase acquisitions were performed: conventional 2D cine-MR and 3D cine-MR. The short-axis cine images acquired 

by both cine-MR techniques were used for the quantitative assessment of LV end-diastolic, end-systolic and stroke vol-

umes, LV mass and ejection fraction.  

Results: All CMR examinations were completed successfully, with both cine-MR imaging techniques yielding interpret-

able diagnostic results in all patients. Regarding the quantitative assessment, Bland-Altman analyses demonstrated a good 

agreement between the measurements of both cine-MR techniques for all LV parameters. In addition, the agreement be-

tween 2D and 3D cine-MR techniques for the qualitative assessment of LV global function was perfect (kappa = 1.0, 

P<0.001) for the two observers in consensus. The assessment performed by the third independent observer also demon-

strated very good agreement (kappa = 0.88, P<0.001). 

Conclusion: The single breathhold 3D cine-MR technique provides an accurate and reproducible quantitative assessment 

of LV volumes, mass and function when compared with the conventional 2D cine-MR method.  

Keywords: Magnetic resonance imaging; left ventricular function; cine imaging; three-dimensional; steady-state free precession; 
fast imaging.  

1. INTRODUCTION 

 The accurate and reproducible assessment of cardiac vol-
umes, function, and mass is of paramount importance in car-
diology. It provides fundamental diagnostic and prognostic 
information in all patients with cardiovascular disease re-
gardless of etiology [1-3]. Currently, two-dimensional 
transthoracic echocardiography is the most commonly used 
diagnostic modality for the assessment and serial measure-
ment of ventricular volumes and function, as it is noninva-
sive and widely available [4]. However, echocardiography is 
known to be operator-dependent and to suffer from limita-
tions secondary to inadequate acoustic windows [5, 6].  
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 More recently, cardiovascular magnetic resonance 
(CMR) imaging has been shown to provide accurate and 
reproducible quantification of ventricular volumes, mass and 
function [7-12]. Given its three-dimensional nature, which 
does not rely on geometric assumptions, CMR has become 
the clinical gold standard against which other techniques are 
compared [13]. Moreover, CMR has been shown to be valu-
able for the assessment of regional contractile function as 
well [6, 14, 15]. This is usually achieved clinically by visual 
inspection of cines in standard imaging planes. Quantifica-
tion of wall motion and thickening using conventional tech-
niques is possible for both the left and right ventricles. 

 Current CMR techniques, however, are based on two-
dimensional (2D) image acquisition protocols and, therefore, 
require multiple time-consuming short-axis views for com-
plete coverage of the heart [8, 16]. Moreover, as these 2D 
imaging techniques typically acquire one or two slices  
or sections per breath-hold, there exists the possibility  
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of misregistration between acquisitions. Recently, three-
dimensional (3D) multiphase acquisitions have been pro-
posed [17-21]. The 3D approach is very appealing because it 
allows for the acquisition of all slices in a single breath-hold; 
thereby minimizing not only the possible slice-to-slice mis-
registration artifacts but also the overall scan time for a ven-
tricular function study. These 3D protocols have become 
much more clinically applicable after the development of 
image acquisition acceleration techniques, such as the dy-
namic variant of the broad-use linear acquisition speed-up 
technique (k-tBLAST) [22-25] or the variable asymmetric 
sampling in time (VAST) approach [26, 27], which have led 
to a substantial decrease in scan time. 

 In the present study we sought to determine whether the 
3D cine-MR technique, using the variable asymmetric sam-
pling in time (VAST) approach, provided an accurate as-
sessment of LV morphological and functional parameters 
when compared with the conventional 2D cine-MR acquisi-
tion technique. More specifically, we investigated the corre-
lation between same-patient 2D and 3D cine-MR acquisi-
tions regarding the assessment of LV volumes, mass and 
function in a series of patients referred for a CMR study and 
in a group of normal volunteers. In addition, the assessment 
of regional contractility by both 2D and 3D cine-MR tech-
niques and the total scan time required to complete the LV 
functional assessment were also compared.  

2. METHODS 

2.1. Population 

 A total of 43 consecutive patients referred for a CMR 
examination for clinical reasons (mean age = 51 ± 16 years; 
27 men) and 14 healthy volunteers without a previous his-
tory of cardiovascular disease (mean age = 30 ± 4 years; 10 
men) were included in the study. The clinical reasons that 
motivated the CMR study were variable and included: as-
sessment of coronary atherosclerotic disease (CAD) (n = 24, 
five of whom had a previous acute myocardial infarction), 
arrhythmogenic right ventricular cardiomyopathy (n = 4), 
valvular heart disease (n = 4), hypertensive cardiomyopathy 
(n = 3), idiopathic dilated cardiomyopathy (n = 2), endo-
myocardial fibrosis (n = 1), Chagas disease (n = 1), hemo-
chromatosis (n = 1), hypertrophic cardiomyopathy (n = 1), 
pericardial disease (n = 1) and heart transplant (n = 1). Pa-
tients were excluded from the study if they had contraindica-
tions for CMR examination, such as non-compatible im-
plants, metallic fragments in the eyes or claustrophobia. The 
study was approved by the Institutional Ethics Committee 
and all subjects gave written informed consent. 

2.2. MRI Protocol 

 All subjects underwent CMR imaging using a 1.5T clini-
cal scanner (Signa CV/I, GE Medical Systems, Waukesha, 
WI) with a dedicated cardiac phased-array receiver coil 
wrapped around the chest. Cine images were acquired using 
a steady-state free precession pulse sequence. Two different 
multiphase acquisitions were performed: conventional 2D 
cine-MR and 3D cine-MR. 

2.3. 2D Cine-MR 

 After localization of the heart, 8 to 12 contiguous short-
axis slices were prescribed to cover the entire LV from base 

to apex. Four long-axis slices were also prescribed: a 4-
chamber view, an LV outflow tract view, and two 2-chamber 
views. Imaging parameters were as follows: repetition time 
3.9 milliseconds, echo time 1.6 milliseconds, flip angle = 
45º, 32- to 36-cm field-of-view (FOV), 8-mm slice thick-
ness, 2-mm gap, acquisition matrix size = 256  160, rectan-
gular FOV = 0.75, 8 to 16 views per segment, NEX = 1, 
voxel size = 1.25 x 2 x 8 mm, temporal phases per scan loca-
tion = 20. 

2.4. 3D Cine-MR 

 In the present study the 3D cine-MR dataset was acquired 
using the VAST scheme [26, 27]. This acquisition scheme is 
similar to the “block regional interpolation for k-space” 
(BRISK) proposed by Doyle et al. [28]. As previously de-
scribed, VAST samples the low spatial frequency at a higher 
temporal resolution than the higher spatial frequency data, 
thereby reducing the total scan time. The low spatial fre-
quency data were acquired using two views per segment, 
where a segment represents a data acquisition block in a car-
diac ECG R-R wave interval. In the spatial encoding scheme 
used, each view is a ky-encoding value and consists of Nz 
slice encoding views, where Nz represents the number of 
partitions in the 3D volume acquisition. Data acquisition of 
each segment is repeated until the next cardiac R-wave trig-
ger is encountered where the next set of ky phase encoding 
values are updated. In this implementation, high spatial fre-
quency data were acquired using four views per segment. 
The temporal resolution of the 3D cine-MR dataset was cal-
culated as: Tres = VPS * Nz * TR, where Tres denotes tempo-
ral resolution, VPS are the number of Kz encoding views in a 
R-R interval and TR denotes the sequence repetition time. 

 We also used partial phase field-of-view (pFOV) in our 
3D cine-MR protocol, which further decreased the overall 
scan time by decreasing the number of acquired ky encoding 
views. In addition, retrospective interpolation was used to 
reconstruct 20 temporal phases per slice partition [29]. As 
data acquisition was continuous, there was no dead time in 
the cardiac R-R interval with the continuous cardiac motion 
of end-diastole through the start of systole well represented. 
The 3D cine-MR imaging parameters were as follows: repe-
tition time 4.9 milliseconds, echo time 2.7 milliseconds,  
flip angle = 45º, 40-cm field-of-view (FOV), 12 partitions 
per volume acquisition, 8- to 10-mm partition thickness,  
no gap, acquisition matrix size = 256  128, rectangular 
FOV = 0.8 to 0.9, number of views per segment calculated 
automatically depending on the heart rate, NEX = 0.5, typi-
cal voxel size = 1.56 x 3.12 x 8 mm, temporal phases per 
scan location = 20. 

 The total time required to complete the acquisition of the 
entire short-axis dataset used for LV morphological and 
functional assessment was computed for both techniques. In 
the case of 2D cine-MR this parameter included the time 
expended in the actual acquisition of the images (during the 
multiple breathholds) and the time expended between 
breathholds while the patients rested in preparation for the 
next respiratory pause. In contrast, since 3D cine-MR acqui-
sition consisted of a single breathhold, this parameter was 
equal to the time required to complete the single acquisition 
period (breathhold time). 
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2.5. MRI Data Analyses 

 The short-axis cine images acquired by both cine-MR 
techniques were used for the quantitative assessment of LV 
end-diastolic volume (EDV), LV end-systolic volume 
(ESV), LV stroke volume (SV), LV mass and LV ejection 
fraction (EF). All analyses were performed using a dedicated 
software package (Mass, Medis, Leiden, The Netherlands). 
Endocardial borders were manually contoured in cine short-
axis slices at end-diastolic and end-systolic phases and calcu-
lations were based on Simpson’s Rule Method. Papillary 
muscles were excluded from the LV volume and considered 
to represent LV lumen. Additionally, end-diastolic epicardial 
borders were manually traced and LV mass was calculated 
by assuming a myocardial tissue density of 1.05 g/cm

3
. All 

analyses were based on the consensus opinion of two ob-
servers (CER and MR) and were also performed by a third 
independent investigator (MHAS) for the assessment of in-
ter-observer variability. 

 Global LV function was also qualitatively evaluated in 
all subjects and graded as: 0- normal; 1- mild dysfunction; 2- 
moderate dysfunction; and 3- severe dysfunction. In addi-
tion, the semi-quantitative visual assessment of regional LV 
contractility was also performed. The segmental wall motion 
analysis was performed on 17 standardized segments of the 
LV [30] and was graded as: 0- normal contractility; 1- mild 
or moderate hypokinesia; 2- severe hypokinesia; 3- akinesia; 
and 4- dyskinesia. 

 With both cine-MR techniques, a qualitative patient-
based analysis of overall image quality was performed and 
graded on a five-point scale: 1- excellent; 2- good; 3- moder-
ate; 4- poor; and 5- non-diagnostic. This subjective scoring 
system was based on the ability of the investigator to visu-
ally identify the LV endocardial and epicardial borders. 

 In addition, the objective quantitative assessment of im-
age quality was also performed in a subgroup of 10 patients. 
LV myocardium and blood-pool signal-to-noise ratios 
(SNR), and myocardium-blood contrast-to-noise ratios 
(CNR) were calculated for both cine-MR techniques. For 
each subject, three measurements were made on the mid-
ventricular short-axis slice; two on the end-diastolic phase 
image and one on the end-systolic phase image. The three 
measurements were subsequently averaged to obtain one 
single measurement per subject. For the quantification of LV 
myocardial signal intensity (SI), a region of interest (ROI) 
was defined on the LV septum. For blood-pool measure-
ments, the largest circular ROI that contained only intraven-
tricular blood was defined on the same short-axis image. 
Image noise was defined as the standard deviation (SD) of SI 
measured in the air outside the body. The myocardial and 
blood-pool SNRs were calculated as: SNRmyo = (SImyo * 
1.5)/SDair and SNRblood = (SIblood * 1.5)/SDair, respectively. 
The myocardium-blood CNR was calculated as: CNRmyo-blood 
= (SIblood – SImyo)/SDair [31]. 

2.6. Statistical Analysis 

 Student's t-tests and Wilcoxon signed rank test were used 
to compare continuous variables, which were expressed as 
mean ± SD. Linear regression analyses were used to evaluate 
the relationship between the values of morphological and 
functional LV parameters measured by both 2D and 3D cine-

MR techniques. In addition, Bland-Altman analyses [32] 
were used to assess the agreement between the measure-
ments obtained by both cine-MR techniques. The interob-
server variability of continuous variables measurements was 
also examined by the Bland-Altman technique, with the cal-
culation of repeatability coefficients for both cine-MR tech-
niques [32, 33]. The agreement between 2D and 3D cine-MR 
techniques for categorical variables was evaluated by the 
kappa statistic. All tests were 2-tailed and a value of P<0.05 
was considered indicative of statistical significance. 

3. RESULTS 

3.1. 2D and 3D Cine-MR Characteristics 

 All CMR examinations were completed successfully, 
with both cine-MR imaging techniques yielding interpretable 
diagnostic results in all patients (Fig 1). The mean scan time 
to acquire the eight to twelve slice locations using the 2D 
cine-MR technique was 470 ± 158 seconds, or approximately 
7 minutes and 50 seconds. In contrast, the scan time required 
to acquire all slice locations using the 3D cine-MR technique 
was much lower, consisting of a single breathhold of 24 ± 4 
seconds (P < 0.0001 versus 2D cine-MR). The mean heart 
rate during image acquisition was similar for both cine-MR 
techniques (70 ± 12 beats per minute for 2D cine-MR and 68 
± 13 beats per minute for 3D cine-MR, P = 0.26). The tem-
poral resolution of the cine-MR datasets, which demon-
strated a slight variation depending on the patient’s heart rate 
during image acquisition, was significantly better in the 2D 
cine-MR than in 3D cine-MR technique (42 ± 11 ms versus 
59 ± 10 ms, P < 0.001). 

3.2. Quantitative Assessment of LV Volumes, Mass and 

Function 

 Among the 14 normal volunteers, the mean LV EDV, LV 
SV and LV EF were slightly higher when calculated with the 
2D cine-MR than with the 3D cine-MR technique (136 ± 27 
ml versus 118 ± 21 ml, P < 0.001 for LV EDV; 94 ± 23 ml 
versus 78 ± 17 ml, P < 0.001 for LV SV; 69 ± 6% versus 65 
± 5%, P = 0.01 for LV EF). The mean values of LV ESV and 
LV mass obtained with both cine-MR techniques were simi-
lar (41 ± 8 ml versus 41 ± 6 ml, P = 0.68 for LV ESV; 98 ± 
25 g versus 95 ± 25 g, P = 0.14 for LV mass). Most impor-
tantly, Bland-Altman analyses demonstrated a good agree-
ment between the measurements obtained with both cine-
MR techniques for all LV parameters (Table 1). 

 Among the 43 patients, the mean LV EDV, LV SV and 
LV EF were also slightly higher when calculated with the 2D 
cine-MR than with the 3D cine-MR technique (165 ± 83 ml 
versus 149 ± 81 ml, P < 0.001 for LV EDV; 82 ± 28 ml ver-
sus 68 ± 25 ml, P < 0.001 for LV SV; 56 ± 18% versus 52 ± 
18%, P < 0.001 for LV EF). The mean values of LV ESV 
and LV mass obtained with both cine-MR techniques were 
similar (83 ± 80 ml versus 81 ± 77 ml, P = 0.23 for LV ESV; 
139 ± 52 g versus 138 ± 48 g, P = 0.99 for LV mass). Most 
importantly, Bland-Altman analyses demonstrated a good 
agreement between the measurements obtained with both 
cine-MR techniques for all LV parameters (Table 1 and Fig. 2). 

 Overall, both cine-MR techniques demonstrated good 
reproducibility. The results related to the interobserver vari-
ability of both cine-MR techniques, for all LV parameters 
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evaluated, are summarized in Table 2. Even though the bias 
was slightly better for the 2D technique in the quantification 
of LV EDV, LV ESV and LV EF, the repeatability coeffi-
cients (variance) were slightly better for the 3D technique in 
the assessment of LV ESV and LV mass. In general, how-
ever, the reproducibility of both cine-MR techniques was 
similar (Table 2). 

3.3. Qualitative Assessment of LV Global Systolic  
Function 

 The two observers in consensus classified, based on the 
analyses of both cine-MR datasets, 29 patients as having 
normal LV function (67%), 2 with mild LV dysfunction 
(5%), 5 with moderate LV dysfunction (12%) and 7 with 
severe LV dysfunction (16%). The agreement between 2D 

and 3D cine-MR techniques for the qualitative assessment of 
LV global function was perfect (kappa = 1.0, P < 0.001) for 
the two observers in consensus. The assessment performed 
by the third independent observer also demonstrated very 
good agreement (kappa = 0.88, P < 0.001); there were only  
3 discordant results (one mild dysfunction classified as  
normal, one mild classified as moderate, and one moderate 
classified as severe dysfunction, by the 2D and 3D tech-
niques, respectively). 

3.4. LV Regional Function 

 The assessment of segmental wall motion using the 2D 
cine-MR dataset resulted in 575 segments (78%) exhibiting 
normal contractile function, 102 segments (14%) exhibiting 
mild/moderate hypokinesia, 15 segments (2%) showing se-

 

 

 

 

 

 

 

 

Fig. (1). Representative examples of short-axis cine-MR images acquired in the same patient using the 2D (top) and the 3D (bottom) cine-

MR techniques. 2D denotes two-dimensional; 3D, three-dimensional; and MR, magnetic resonance. 

Table 1. Comparison Between the Quantitative Assessment of LV Volumes, Mass and Function by the 2D and the 3D Cine-MR 

Techniques 

Parameter 2D 3D Bias P 95% Limits of 

Agreement 

Correlation 

Coefficient 

Linear Regression 

Equation 

P 

Volunteers 

LV EDV (ml) 136 ± 27 118 ± 21 -18 ± 12 <0.001 -41/6 0.91 y = 0.70x + 22.7 <0.001 

LV ESV (ml) 41 ± 8 41 ± 6 -1 ± 6 0.68 -12/11 0.71 y = 0.57x + 17.1 <0.001 

LV SV (ml) 94 ± 23 78 ± 17 -17 ± 12 <0.001 -41/8 0.87 y = 0.63x + 18.1 <0.001 

LV EF (%) 69 ± 6 65 ± 5 -3 ± 4 0.01 -12/5 0.70 y = 0.55x + 26.8 <0.001 

LV mass (g) 98 ± 25 95 ± 25 -3 ± 7 0.14 -18/12 0.96 y = 0.96x + 0.4 <0.001 

Patients 

LV EDV (ml) 165 ± 83 149 ± 81 -16 ± 17 <0.001 -50/18 0.98 y = 0.95x - 8.2 <0.001 

LV ESV (ml) 83 ± 80 81 ± 77 -2 ± 10 0.23 -22/18 0.99 y = 0.96x + 1.2 <0.001 

LV SV (ml) 82 ± 28 68 ± 25 -14 ± 14 <0.001 -43/15 0.86 y = 0.76x + 5.4 <0.001 

LV EF (%) 56 ± 18 52 ± 18 -4 ± 6 <0.001 -15/8 0.95 y = 0.92x + 0.9 <0.001 

LV mass (g) 139 ± 52 138 ± 48 0 ± 19 0.99 -39/38 0.93 y = 0.85x + 19.2 <0.001 

LV denotes left ventricular; 2D, two-dimensional; 3D, three-dimensional; EDV, end-diastolic volume; ESV, end-systolic volume; SV, systolic volume; and EF, ejection fraction. 
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vere hypokinesia, 33 segments (5%) with akinesia, and 6 
segments (1%) showing dyskinesia. The results with the 3D 
dataset were similar: 572 segments (78%) with normal con-
tractile function, 102 segments (14%) with mild/moderate 
hypokinesia, 21 segments (3%) with severe hypokinesia, 30 
segments (4%) with akinesia, and 6 segments (1%) with dy-

skinesia. Indeed, the agreement between both cine-MR tech-
niques for the assessment of regional LV function was excel-
lent (kappa = 0.94, P < 0.001) (Fig. 3). The agreement was 
perfect in 34 patients (79%) and there were only 17 discor-
dant segments in the remaining 9 patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Linear regression graphs (on the left) and Bland-Altman graphs (on the right) illustrating the excellent correlation and agreement 

between the values of LV volumes, mass and function obtained with the conventional 2D and the proposed 3D cine-MR techniques. LV 

denotes left ventricular; 2D, two-dimensional; 3D, three-dimensional; EDV, end-diastolic volume; ESV, end-systolic volume; SV, systolic 

volume; EF, ejection fraction; and MR, magnetic resonance. 
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Fig. (3). Selected short-axis cine-MR images illustrating the excel-

lent agreement between both cine-MR techniques for the assess-

ment of LV regional function. Note that this patient has a small 

region of hypokinesia in the inferior LV wall (arrows) that could be 

easily identified by both the 2D (top) and the 3D (bottom) image 

acquisition methods. 2D denotes two-dimensional; 3D, three-

dimensional; and MR, magnetic resonance. 

3.5. Image Quality 

 The qualitative assessment of the 2D cine-MR dataset 
revealed that the overall image quality was very good, with 
38 studies (88%) exhibiting excellent image quality and 5 
studies (12%) demonstrating good image quality. The results 
of the qualitative assessment of the 3D cine-MR dataset re-
vealed 26 studies (60%) with excellent image quality, 10 
studies (23%) with good image quality, 5 studies (12%) with 
moderate image quality and 2 studies (5%) with poor image 
quality. Even though the results were not as good as those 
observed with the 2D technique, most 3D cine-MR studies 
were of excellent/good image quality, only 2 demonstrated 
poor image quality and there weren’t any studies classified 
as non-diagnostic. The mean image quality score was sig-
nificantly better for the 2D than for the 3D cine-MR tech-
nique (1.12 ± 0.32 versus 1.60 ± 0.88, P < 0.001). 

 Based on the quantitative assessment of image quality 
parameters using the 2D cine-MR dataset, the calculated 

myocardium SNR was 34 ± 6, the blood-pool SNR was 101 
± 27 and the myocardium-blood CNR was 44 ± 16. Based on 
the assessment of the 3D dataset, the myocardium SNR was 
36 ± 33, the blood-pool SNR was 121 ± 99 and the myocar-
dium-blood CNR was 57 ± 49. All quantitative image quality 
parameters were similar when both cine-MR techniques were 
compared (P = 0.83 for myocardium SNR; P = 0.54 for 
blood-pool SNR; and P = 0.49 for myocardium-blood CNR). 

4. DISCUSSION 

 In the present study we were able to demonstrate that the 
3D cine-MR multiphase acquisition with the VAST tech-
nique allows for the accurate and reproducible assessment of 
LV morphological and functional parameters when com-
pared with the conventional 2D technique. The agreement 
between both cine-MR techniques was very good, not only 
for the quantitative analyses of LV volumes, mass and func-
tion, but also for the qualitative assessment of global and 
regional LV systolic function. Even though the overall image 
quality was better for the 2D technique, most studies with 
the 3D cine-MR method were of excellent image quality and 
there weren’t any non-diagnostic studies. Most importantly, 
the use of the proposed 3D technique resulted in a 20-fold 
reduction in the scanning time required for the assessment of 
LV morphological and functional parameters. 

4.1. Quantitative Assessment 

 Previous studies have investigated 3D cine-MR tech-
niques for the assessment of LV volumes, mass and function 
in comparison with conventional 2D cine-MR acquisitions 
[19, 21-23, 26]. In these previous reports, the agreement be-
tween both cine-MR techniques was consistently very good, 
which is in agreement with our results. Jahnke et al. [23] and 
Greil et al. [22] used a 3D cine-MR acquisition with the kt-
BLAST acceleration technique and investigated 40 consecu-
tive patients with known/suspected CAD and 17 healthy vol-
unteers, respectively. Hamdan et al. also employed the kt-
BLAST technique to investigate 23 consecutive patients with 
known/suspected CAD and demonstrated that the single 
breathhold 3D cine-MR acquisition could also be performed 
in a 3T system [24]. Rettmann et al. evaluated LV functional 
parameters using a technique similar to the one used in the 
present study, i.e., 3D cine-MR with the VAST acceleration 

Table 2. Comparison Between the Quantitative Assessment of LV Volumes, Mass and Function by the 2D and the 3D Cine-MR 

Techniques 

                                                         Mean Difference Between Both Observers (Bias)          Coefficient of Repeatability 

Parameter 2D 3D P* 2D 3D P** 

LV EDV (ml) 0.5 8.3 0.06 ± 24.0 ± 17.1 0.32 

LV ESV (ml) 0.2 6.6 0.05 ± 20.0 ± 9.0 0.03 

LV SV (ml) 0.6 0 0.88 ± 21.4 ± 27.1 0.49 

LV EF (%) 1.5 -2.4 0.05 ± 10.5 ± 8.9 0.65 

LV mass (g) 13.8 14.6 0.85 ± 27.6 ± 12.7 0.03 

* P value of the Student’s t test for the 2D versus the 3D mean differences (bias) 
** P value of the two-sample variance-comparison test for the 2D versus 3D repeatability coefficients 
LV denotes left ventricular; 2D, two-dimensional; 3D, three-dimensional; EDV, end-diastolic volume; ESV, end-systolic volume; SV, systolic volume; and EF, ejection fraction. 
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scheme [26]. However, in that study they evaluated only 7 
patients with chronic myocardial infarction. The present 
study was the first to include both normal volunteers and 
patients with cardiovascular diseases. Most importantly, 
while previous studies only included patients with known/ 
suspected CAD, the present study investigated a much more 
representative population, including patients with a wide 
variety of heart diseases.  

 Most importantly, in the present study, all Bland-Altman 
analyses revealed good agreement between the measure-
ments obtained by the 2D and 3D cine-MR methods. As we 
can see in Fig. (2), the observed bias and limits of agreement 
are well within the range that is considered clinically accept-
able if we take into consideration the inter- and intraobserver 
variability that is reported in the literature for the conven-
tional 2D technique [34-36].  

4.2. Qualitative Assessment 

 It is widely recognized that, in everyday clinical practice, 
the subjective qualitative assessment of global LV systolic 
function is much more frequently used and, to a certain de-
gree, more relevant in a practical point of view than the 
value obtained from the objective calculation of LV ejection 
fraction. Nevertheless, it is a fact that most studies that in-
vestigated the performance of CMR for the assessment of 
LV function have focused on the objective quantitative 
measurements [22-24, 26]. In the present study, in addition 
to the quantitative analyses, we have also performed a quali-
tative assessment of LV global systolic function. We were 
able to demonstrate that the agreement between the 2D and 
the 3D cine-MR techniques was excellent for the classifica-
tion of patients as having normal LV function or mild, mod-
erate or severe LV dysfunction. We believe these findings 
highlight the potential of the 3D cine-MR technique to be 
useful and applicable in everyday CMR clinical practice. 

4.3. Regional Function 

 The presence of wall motion abnormalities is a frequent 
finding in a wide variety of cardiovascular diseases. It is 
particularly common in the setting of ischemic heart disease 
[15, 37-40], but is also frequent in a large proportion of non-
ischemic cardiomyopathies [41-45]. The accurate identifica-
tion of LV regional dysfunction, as well as the correct as-
sessment of its severity, plays an important role in the diag-
nostic work-up of these conditions. Moreover, the accurate 
assessment of regional contractility is particularly important 
in CMR studies with pharmacological stress for the investi-
gation of myocardial ischemia [15, 46-48]. Our findings in-
dicate that the assessment of regional LV function in a single 
breathhold using the 3D cine-MR technique can provide ac-
curate and reliable results when compared with the conven-
tional 2D method. 

 We believe the 3D technique have the potential to be 
specially useful in the setting of stress CMR studies, in 
which the patients are required to perform multiple breath-
holds in each pharmacological stress stage with the conven-
tional 2D technique. It is important to recognize, however, 
that due to the high heart rates observed during stress CMR 
studies, it might be necessary to improve the temporal reso-
lution of the 3D technique before it becomes clinically appli-

cable for this particular indication. Future studies investigat-
ing the use of the 3D cine-MR method in this specific situa-
tion will be necessary to clarify this issue. 

4.4. Image Quality 

 The qualitative assessment of image quality demon-
strated that the overall quality was better for the cine-MR 
images obtained with the 2D technique than for those ob-
tained with the 3D method. This difference was due to the 
fact that, in some studies, there was a certain degree of blur-
ring of the endocardial and epicardial borders on the 3D im-
ages that was not present in the 2D dataset. We believe this 
image blurring was a result of the worse temporal resolution 
of the 3D cine-MR technique. Nevertheless, despite this 
limitation, the vast majority of studies using the 3D acquisi-
tion was considered to be of excellent/good image quality 
(83%). Even more important, all studies with the 3D tech-
nique were considered to be of diagnostic image quality. 
Accordingly, the quantitative parameters of image quality, 
namely myocardial SNR, blood-pool SNR and myocardial-
blood CNR, were similar in the 2D and the 3D cine-MR 
datasets. 

4.5. Limitations 

 In addition to the aforementioned limitation regarding the 
temporal resolution of the 3D cine-MR dataset, another im-
portant limitation of the present study refers to the fact that 
we did not employ parallel imaging acceleration techniques 
[49-51] in our cine-MR acquisitions protocols. Currently, 
this modality of scan acceleration technique is widely used 
in most CMR studies as it provides a 2 to 4-fold decrease in 
scanning time. The trade-off with the use of parallel imaging 
is a reduction in the image SNR in the order of 40%. As pre-
viously demonstrated, parallel imaging techniques can be 
used in combination with the VAST scheme [26]. However, 
in the present study we decided to evaluate one particular 
acceleration strategy: the VAST technique. Therefore, we 
did not associate parallel imaging in our CMR protocols. 
Nevertheless, it is important to recognize that, with the com-
bination of VAST and parallel imaging techniques, we could 
have significantly improved the temporal/spatial resolution 
and/or decreased the breathhold time of our cine-MR 
datasets. Indeed, this combination could be especially useful 
in patients with shortness of breath, for whom a 24-second 
breathholh time might be too long, potentially resulting in 
respiratory motion artifacts. We believe future studies evalu-
ating the combination of both acceleration techniques might 
result in an improvement in the overall image quality of the 
3D cine-MR datasets and, possibly, an increase in the accu-
racy and reproducibility of the 3D technique. 

4.6. Conclusion 

 The single breathhold 3D cine-MR technique provides an 
accurate and reproducible quantitative assessment of LV 
volumes, mass and function when compared with the con-
ventional 2D cine-MR method. In addition, the qualitative 
assessment of global and regional LV systolic function by 
the 3D technique also demonstrated an excellent agreement 
with the results obtained with the conventional 2D cine-MR 
method. Most importantly, the use of the proposed 3D tech-
nique resulted in a 20-fold reduction in the scanning time 
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required for the assessment of LV morphological and func-
tional parameters while preserving diagnostic image quality 
in all cine-MR studies. 

REFERENCES 

[1] Bonow RO, Carabello BA, Kanu C, et al. ACC/AHA 2006 

guidelines for the management of patients with valvular heart 
disease: a report of the American College of Cardiology/American 

Heart Association Task Force on Practice Guidelines (writing 
committee to revise the 1998 Guidelines for the Management of 

Patients With Valvular Heart Disease): developed in collaboration 
with the Society of Cardiovascular Anesthesiologists: endorsed by 

the Society for Cardiovascular Angiography and Interventions and 
the Society of Thoracic Surgeons. Circulation 2006; 114: e84-231. 

[2] Carabello BA. Evolution of the study of left ventricular function: 
everything old is new again. Circulation 2002; 105: 2701-3. 

[3] Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 
Guideline Update for the Diagnosis and Management of Chronic 

Heart Failure in the Adult: a report of the American College of 
Cardiology/American Heart Association Task Force on Practice 

Guidelines (Writing Committee to Update the 2001 Guidelines for 
the Evaluation and Management of Heart Failure): developed in 

collaboration with the American College of Chest Physicians and 
the International Society for Heart and Lung Transplantation: 

endorsed by the Heart Rhythm Society. Circulation 2005; 112: 
e154-235. 

[4] Douglas PS, Khandheria B, Stainback RF, et al. ACCF/ASE/ 
ACEP/ASNC/SCAI/SCCT/SCMR 2007 appropriateness criteria for 

transthoracic and transesophageal echocardiography: a report of the 
American College of Cardiology Foundation Quality Strategic 

Directions Committee Appropriateness Criteria Working Group, 
American Society of Echocardiography, American College of 

Emergency Physicians, American Society of Nuclear Cardiology, 
Society for Cardiovascular Angiography and Interventions, Society 

of Cardiovascular Computed Tomography, and the Society for 
Cardiovascular Magnetic Resonance endorsed by the American 

College of Chest Physicians and the Society of Critical Care 
Medicine. J Am Coll Cardiol 2007 10; 50: 187-204. 

[5] Corsi C, Coon P, Goonewardena S, et al. Quantification of regional 
left ventricular wall motion from real-time 3-dimensional 

echocardiography in patients with poor acoustic windows: effects 
of contrast enhancement tested against cardiac magnetic resonance. 

J Am Soc Echocardiogr 2006; 19: 886-93. 
[6] Hundley WG, Hamilton CA, Thomas MS, et al. Utility of fast cine 

magnetic resonance imaging and display for the detection of 
myocardial ischemia in patients not well suited for second 

harmonic stress echocardiography. Circulation 1999; 100: 1697-
702. 

[7] Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR 
angiography of the heart with segmented true fast imaging with 

steady-state precession. Radiology 2001; 219: 828-34. 
[8] Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. 

MR evaluation of ventricular function: true fast imaging with 
steady-state precession versus fast low-angle shot cine MR 

imaging: feasibility study. Radiology 2001; 219: 264-9. 
[9] Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr. 

Normal human right and left ventricular mass, systolic function, 
and gender differences by cine magnetic resonance imaging. J 

Cardiovasc Magn Reson 1999; 1: 7-21. 
[10] Katz J, Milliken MC, Stray-Gundersen J, et al. Estimation of 

human myocardial mass with MR imaging. Radiology 1988; 169: 
495-8. 

[11] Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB. 
Measurement of right and left ventricular volumes in healthy 

individuals with cine MR imaging. Radiology 1987; 163: 697-702. 
[12] Longmore DB, Klipstein RH, Underwood SR, et al. Dimensional 

accuracy of magnetic resonance in studies of the heart. Lancet 
1985; 1: 1360-2. 

[13] Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left 
ventricular ejection fraction and volumes in heart failure by 

echocardiography, radionuclide ventriculography and cardiovas- 
cular magnetic resonance; are they interchangeable? Eur Heart J 

2000; 21: 1387-96. 
[14] Azevedo CF, Amado LC, Kraitchman DL, et al. Persistent diastolic 

dysfunction despite complete systolic functional recovery after 

reperfused acute myocardial infarction demonstrated by tagged 

magnetic resonance imaging. Eur Heart J 2004; 25: 1419-27. 
[15] Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis 

of ischemia-induced wall motion abnormalities with the use of 
high-dose dobutamine stress MRI: comparison with dobutamine 

stress echocardiography. Circulation 1999; 99: 763-70. 
[16] Miller S, Simonetti OP, Carr J, Kramer U, Finn JP. MR Imaging of 

the heart with cine true fast imaging with steady-state precession: 
influence of spatial and temporal resolutions on left ventricular 

functional parameters. Radiology 2002; 223: 263-9. 
[17] Alley MT, Napel S, Amano Y, et al. Fast 3D cardiac cine MR 

imaging. J Magn Reson Imaging 1999; 9: 751-5. 
[18] Amano Y, Herfkens RJ, Shifrin RY, Alley MT, Pelc NJ. Three-

dimensional cardiac cine magnetic resonance imaging with an 
ultrasmall superparamagnetic iron oxide blood pool agent 

(NC100150). J Magn Reson Imaging 2000; 11: 81-6. 
[19] Barger AV, Grist TM, Block WF, Mistretta CA. Single breath-hold 

3D contrast-enhanced method for assessment of cardiac function. 
Magn Reson Med 2000; 44: 821-4. 

[20] Jung BA, Hennig J, Scheffler K. Single-breathhold 3D-trueFISP 
cine cardiac imaging. Magn Reson Med 2002; 48: 921-5. 

[21] Peters DC, Ennis DB, Rohatgi P, Syed MA, McVeigh ER, Arai 
AE. 3D breath-held cardiac function with projection reconstruction 

in steady state free precession validated using 2D cine MRI. J 
Magn Reson Imaging 2004; 20: 411-6. 

[22] Greil GF, Germann S, Kozerke S, et al. Assessment of left 
ventricular volumes and mass with fast 3D cine steady-state  

free precession k-t space broad-use linear acquisition speed-up 
technique (k-t BLAST). J Magn Reson Imaging 2008; 27: 510-5. 

[23] Jahnke C, Nagel E, Gebker R, et al. Four-dimensional single 
breathhold magnetic resonance imaging using kt-BLAST enables 

reliable assessment of left- and right-ventricular volumes and mass. 
J Magn Reson Imaging 2007; 25: 737-42. 

[24] Hamdan A, Kelle S, Schnackenburg B, Wellnhofer E, Fleck E, 
Nagel E. Single-breathhold four-dimensional assessment of left 

ventricular volumes and function using k-t BLAST after 
application of extracellular contrast agent at 3 Tesla. J Magn Reson 

Imaging 2008; 27: 1028-36. 
[25] Kozerke S, Tsao J, Razavi R, Boesiger P. Accelerating cardiac  

cine 3D imaging using k-t BLAST. Magn Reson Med 2004; 52:  
19-26. 

[26] Rettmann DW, Saranathan M, Wu KC, Azevedo CF, Bluemke  
DA, Foo TK. High temporal resolution breathheld 3D FIESTA 

CINE imaging: validation of ventricular function in patients with 
chronic myocardial infarction. J Magn Reson Imaging 2007; 25: 

1141-6. 
[27] Foo TK, Stanley DW, Castillo E, et al. Myocardial viability: 

breath-hold 3D MR imaging of delayed hyperenhancement with 
variable sampling in time. Radiology 2004; 230: 845-51. 

[28] Doyle M, Walsh EG, Blackwell GG, Pohost GM. Block regional 
interpolation scheme for k-space (BRISK): a rapid cardiac imaging 

technique. Magn Reson Med 1995; 33: 163-70. 
[29] Feinstein JA, Epstein FH, Arai AE, et al. Using cardiac phase to 

order reconstruction (CAPTOR): a method to improve diastolic 
images. J Magn Reson Imaging 1997; 7: 794-8. 

[30] Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized 
myocardial segmentation and nomenclature for tomographic 

imaging of the heart: a statement for healthcare professionals from 
the Cardiac Imaging Committee of the Council on Clinical 

Cardiology of the American Heart Association. Circulation 2002; 
105: 539-42. 

[31] Henkelman RM. Measurement of signal intensities in the presence 
of noise in MR images. Med Phys 1985; 12: 232-3. 

[32] Bland JM, Altman DG. Statistical methods for assessing agreement 
between two methods of clinical measurement. Lancet 1986; 1: 

307-10. 
[33] Bland JM, Altman DG. Measuring agreement in method 

comparison studies. Stat Methods Med Res 1999; 8: 135-60. 
[34] Semelka RC, Tomei E, Wagner S, et al. Interstudy reproducibility 

of dimensional and functional measurements between cine 
magnetic resonance studies in the morphologically abnormal left 

ventricle. Am Heart J 1990; 119: 1367-73. 
[35] Semelka RC, Tomei E, Wagner S, et al. Normal left ventricular 

dimensions and function: interstudy reproducibility of measure- 
ments with cine MR imaging. Radiology 1990; 174: 763-8. 



98    The Open Cardiovascular Medicine Journal, 2011, Volume 5 Rochitte et al. 

[36] Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular 

volume and mass with breath-hold cine MR imaging. Radiology 
1993; 188: 377-80. 

[37] Azevedo CF, Amado LC, Kraitchman DL, et al. The effect of intra-
aortic balloon counterpulsation on left ventricular functional 

recovery early after acute myocardial infarction: a randomized 
experimental magnetic resonance imaging study. Eur Heart J 2005; 

26: 1235-41. 
[38] Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd 

RM. Transmural extent of acute myocardial infarction predicts 
long-term improvement in contractile function. Circulation 2001; 

104: 1101-7. 
[39] Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JAC. Accuracy of 

contrast-enhanced magnetic resonance imaging in predicting 
improvement of regional myocardial function in patients after acute 

myocardial infarction. Circulation 2002; 106: 1083-9. 
[40] Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced 

magnetic resonance imaging to identify reversible myocardial 
dysfunction. N Engl J Med 2000; 343: 1445-53. 

[41] Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring 
in asymptomatic or mildly symptomatic patients with hypertrophic 

cardiomyopathy. J Am Coll Cardiol 2002; 40: 2156-64. 
[42] Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed 

enhancement cardiovascular magnetic resonance assessment of 
non-ischaemic cardiomyopathies. Eur Heart J 2005; 26: 1461-74. 

[43] Rochitte CE, Oliveira PF, Andrade JM, et al. Myocardial delayed 
enhancement by magnetic resonance imaging in patients with 

Chagas' disease: a marker of disease severity. J Am Coll Cardiol 
2005; 46: 1553-8. 

[44] Silva MC, Meira ZMA, Gurgel Giannetti J, et al. Myocardial 
delayed enhancement by magnetic resonance imaging in patients 

with muscular dystrophy. J Am Coll Cardiol 2007; 49: 1874-9. 

[45] Azevedo CF, Nigri M, Higuchi ML, et al. Prognostic significance 

of myocardial fibrosis quantification by histopathology and 
magnetic resonance imaging in patients with severe aortic valve 

disease. J Am Coll Cardiol 2010; 56: 278-87. 
[46] Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/ 

SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for 
cardiac computed tomography and cardiac magnetic resonance 

imaging: a report of the American College of Cardiology Founda- 
tion Quality Strategic Directions Committee Appropriateness 

Criteria Working Group, American College of Radiology, Society 
of Cardiovascular Computed Tomography, Society for 

Cardiovascular Magnetic Resonance, American Society of Nuclear 
Cardiology, North American Society for Cardiac Imaging, Society 

for Cardiovascular Angiography and Interventions, and Society of 
Interventional Radiology. J Am Coll Cardiol 2006; 48: 1475-97. 

[47] Nagel E, Lorenz C, Baer F, et al. Stress cardiovascular magnetic 
resonance: consensus panel report. Journal of cardiovascular 

magnetic resonance. J Soc Cardiovasc Magn Resonance 2001; 3: 
267-81. 

[48] Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for 
cardiovascular magnetic resonance (CMR): Consensus Panel 

report. Eur Heart J 2004; 25: 1940-65. 
[49] Sodickson DK, Manning WJ. Simultaneous acquisition of spatial 

harmonics (SMASH): fast imaging with radiofrequency coil arrays. 
Magn Reson Med 1997; 38: 591-603. 

[50] Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: 
sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-

62. 
[51] Griswold MA, Jakob PM, Heidemann RM, et al. Generalized 

autocalibrating partially parallel acquisitions (GRAPPA). Magn 
Reson Med 2002; 47: 1202-10. 

 
 

Received: January 28, 2011 Revised: February 10, 2011 Accepted: February 11, 2011 

 

© Rochitte et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ 

by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.  

 

 
 

 

 


