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Abstract: Cardiovascular disease is a major cause of morbidity and mortality in patients with impaired renal function. 

Dyslipidemia has been established as a well-known traditional risk factor for cardiovascular disease (CVD) in the general 

population and it is well known that patients with chronic kidney disease (CKD) exhibit significant alterations in lipopro-

tein metabolism. In this review, the pathogenesis and treatment of CKD-induced dyslipidemia are discussed. Studies on 

lipid abnormalities in predialysis, hemodialysis and peritoneal dialysis patients are analyzed. In addition, the results of the 

studies that tested the effects of the hypolipidemic drugs on cardiovascular morbidity and mortality in patients with CKD 

are reported.  
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INTRODUCTION 

 Chronic kidney disease (CKD) is a significant health 
problem. It was estimated that the prevalence of CKD among 
the USA population between 1999-2004 was 15.3% [1]. On 
the other hand, it is well documented that cardiovascular 
disease (CVD) is a major cause of morbidity and mortality in 
patients with CKD [2-6]. Thus, although some patients with 
CKD will ultimately develop end stage renal disease 
(ESRD), most patients with CKD will die of CVD before 
dialysis becomes necessary [7]. Mild chronic impaired renal 
function contributes actively to the development of CVD, so 
the American Heart Association has recommended that these 
patients should be classified in the highest risk group for 
developing cardiovascular events [5]. Even microalbuminu-
ria in the absence of apparent deterioration in renal function 
or diabetes predicts more CVD and deaths [8]. In patients 
who finally advance to ESRD and especially dialysis pa-
tients, the prevalence of clinical coronary heart disease is 
40% and CVD mortality is 10 to 30 times higher than in the 
general population of the same gender, age and race [5, 9, 
10].  

 Several factors contribute to atherogenesis and CVD in 
patients with CKD [11]. Although most of the cases of coro-
nary heart disease in the general population can be explained 
by traditional, Framingham risk factors [12], in patients with 
CKD, uremia related, non -traditional risk factors, such as, 
inflammation, oxidative stress, anemia, malnutrition, vascu-
lar calcification (due to alterations in calcium and phospho-
rus metabolism) and endothelial dysfunction have been pro-
posed to play a central role [13]. However, studies investi-
gating the usefulness of current CVD biomarkers have con-
cluded that they add only moderately to traditional risk fac-
tors for risk assessment in individuals with almost normal  
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renal function [14] as well as patients with mild to moderate 
CKD [15, 16]. 

 Notable among the traditional risk factors for CVD in the 
general population is dyslipidemia. Several observational 

studies have shown that total and LDL-cholesterol values are 

two of the most important independent predictors of cardio-
vascular morbidity and mortality [17]. Also, it is well known 

that patients with impaired renal function exhibit significant 

alterations in lipoprotein metabolism, which in their most 
advanced form may result in the development of severe 

dyslipidemia. However, the precise role that these alterations 

play in the pathogenesis of atherosclerosis in individuals 
with CKD remains controversial. In this review studies on 

the pathogenesis of CKD-induced dyslipidemia in predialy-

sis and dialysis patients with impaired renal function and the 
results of drug therapy are discussed.  

PATHOPHYSIOLOGY OF CKD-INDUCED DYSLIPI-

DEMIA 

 CKD is characterized by specific metabolic abnormalities 
of plasma lipoproteins [18, 19]. These abnormalities involve 
all lipoprotein classes and shows variations depending on the 
degree of renal impairment, the etiology of primary disease, 
the presence of nephrotic syndrome (NS) and the method of 
dialysis [hemodialysis (HD) or peritoneal dialysis (PD)] for 
patients undergoing renal replacement therapy. 

ALTERATIONS OF TRIGLYCERIDE-RICH LIPO-

PROTEIN METABOLISM IN PREDIALYSIS AND 

DIALYSIS PATIENTS WITH CKD 

 Hypertriglyceridemia is one of the most common quanti-

tative lipid abnormalities in patients with CKD [20-22]. The 

concentrations of triglyceride-rich lipoproteins [very-low-
density lipoprotein (VLDL), chylomicrons, and their rem-

nants] start to increase in early stages of CKD and show the 

highest values in NS and in dialysis patients, especially those 
who are treated with PD.  
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 Several studies have shown that patients with impaired 
renal function exhibit increased concentrations of triglyc-
erides even though serum creatinine levels are within normal 
limits [23, 24]. Also, individuals with CKD usually display 
abnormal increases in serum triglyceride levels after a fat 
meal (postprandial lipemia) [25]. The predominant mecha-
nism responsible for increased concentration of triglyceride-
rich lipoproteins in predialysis patients is one of delayed 
catabolism [26]. The reduced catabolic rate is likely due to 
diminished lipoprotein lipase activity as a consequence of 
the downregulation of the enzyme gene [27] and the pres-
ence of lipase inhibitors [28]. Apolipoprotein C-III is a po-
tent inhibitor of lipoprotein lipase whereas apolipoprotein C-
II is an activator of the same enzyme. A decrease in apolipo-
protein C-II/C-III ratio due to a disproportionate increase in 
plasma apolipoprotein C-III is a possible cause of lipoprotein 
lipase inactivation in uremia [29-32]. It was also suggested 
that secondary hyperparathyroidism is involved in the im-
paired catabolism of triglyceride-rich lipoproteins, provided 
an additional mechanism by which CKD may raise plasma 
triglyceride concentrations [33, 34]. Except of the low cata-
bolic rate, the increased hepatic production of triglyceride-
rich lipoproteins may also play a contributory role in the 
pathogenesis of dyslipidemia in renal disease [26]. It is well 
known that CKD causes insulin resistance which can, in 
turn, promote hepatic VLDL production [23-25]. Thus, it 
could be hypothesized that the insulin resistance-driven 
overproduction of VLDL may significantly contribute to the 
development of hypertiglyceridemia in patients with CKD.  

 Hypertiglyceridemia [due to accumulation of VLDL and 
remnant lipoproteins such as intermediate-density lipopro-
tein (IDL)], is also the predominant lipoprotein abnormality 
in a considerable number of cases with nephrotic range pro-
teinuria [35]. This dyslipidemia results from a combination 
of increased production and reduced clearance of VLDL 
[36]. It is well known that the progressive delipidation of 
triglyceride-rich lipoproteins is facilitated by the action of 
two different enzymes namely endothelial-bound lipoprotein 
lipase and hepatic lipase. The expression of the genes of 
these enzymes has been found to be downregulated in pa-
tients with NS [37]. In addition, other factors such as hy-
poalbuminemia and proteinuria may further decrease the 
efficiency of lipoprotein lipase-induced lipolysis of triglyc-
eride-rich lipoproteins by interfering with the endothelial 
binding of the enzyme and by changing the composition of 
VLDLs in a way that reduces their suitability as lipoprotein 
lipase substrates, respectively [38].  

 The initiation of renal replacement therapy, as well as the 
choice of dialysis modality, may also influence the levels of 
triglyceride-rich lipoproteins in ESRD patients [39]. The 
pathophysiological mechanisms responsible for these altera-
tions seem to be generally similar with those described in 
predialysis patients with CKD. However, factors related to 
the procedure of renal replacement therapy seem to contrib-
ute to the increased levels of triglycerides observed in this 
patient group. In HD patients the repeated use of low-
molecular heparins for anticoagulation may lead to a defec-
tive catabolism of triglyceride-rich lipoproteins as heparin 
releases lipoprotein lipase from the endothelia surface and 
thus its chronic use may result in lipoprotein lipase deple-
tion. However, the studies that tested the role of heparin in 
the pathogenesis of HD-induced dyslipidemia revealed con-

tradictory results [40-42]. In addition, controversy exists as 
to whether low-molecular weight heparins have a more fa-
vorable effect on the lipid profile of HD patients compared 
to standard unfractionated heparin [43, 44]. Also, studies on 
the influence of the type of membrane used in HD yielded 
conflicting results. It has been shown that the use of high-
flux polysulfone or cellulose triacetate membranes is accom-
panied by a significant reduction in serum triglyceride. This 
improvement could, at least in part, be attributed to an in-
crease in the apolipoprotein C-II/CIII ratio which increases 
the activity of lipoprotein lipase and facilitates the intravas-
cular lipolysis of triglyceride-rich lipoproteins [45]. How-
ever, other studies suggest that the type of dialysis mem-
brane does not influence the characteristics of dyslipidemia 
[46]. 

 In contrast to HD patients, hypertiglyceridemia is more 
prevalent in continuous ambulatory peritoneal dialysis 
(CAPD) patients [47]. Although the pathophysiological 
mechanisms are not clear, it has been suggested that the sig-
nificant absorption of glucose from the dialysis fluid may 
play a significant role as it can lead to an increase in insulin 
levels and may enhance the hepatic synthesis and secretion 
of VLDL [48]. Although no direct correlation has been ob-
served between peritoneal glucose absorption and serum 
lipid levels in peritoneal dialysis patients, recent studies in-
dicate that the reduction of glucose load with the use of less 
absorbed icodextrin-containing dialysis solution instead of 
glucose for the overnight dwell, sufficiently improves the 
lipid profile of these patients [49, 50]. 

ALTERATIONS IN LOW DENSITY LIPOPROTEIN 

(LDL) METABOLISM IN PREDIALYSIS AND DI-

ALYSIS PATIENTS WITH CKD 

 Plasma total cholesterol is usually normal or reduced and 
occasionally elevated in ESRD patients. A significant factor 
which determines the levels of plasma cholesterol-rich lipo-
proteins, except of the deterioration in renal function, is the 
degree of proteinuria. Chronic kidney disease in the absence 
of heavy proteinuria does not significantly affect gene ex-
pressions of either hydroxyl-3-methylglutaryl-CoA reductase 
(HMG-CoA reductase) which is the rate-limiting enzyme  
for cholesterol biosynthesis, or that of cholesterol 7a-
hydroxylase which is the rate-limiting enzyme for choles-
terol catabolism and conversion to bite acids [51]. Also, 
LDL receptor-mediated cholesterol uptake plays an impor-
tant role in cholesterol homeostasis. CKD in the absence of 
heavy proteinuria or significant glomerulosclerosis does not 
alter hepatic LDL receptor gene expression [51]. In contrast, 
patients with nephrotic range proteinuria, exhibit an acquired 
LDL-receptor deficiency [52]. Although the nature of this 
deficiency has not been fully characterized, studies in ex-
perimental animals have shown that the inefficient transla-
tion and/or the increased LDL-receptor protein turnover may 
represent the most important causes for its development [53, 
54]. In addition to these mechanisms, conformational 
changes in the apolipoprotein B moiety of LDLs may further 
reduce the affinity of LDL particles for LDL receptor thus 
contributing to the elevated LDL-cholesterol levels that rep-
resent the prominent feature of nephrotic dyslipidemia [55]. 
The reduced receptor-mediated catabolism of LDL particles 
along with the upregulation of acyl-coenzyme A: cholesterol 
acyltransferase (ACAT) gene (the enzyme responsible for 
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cholesterol esterification in hepatocytes) that has been ob-
served in individuals with NS [56] may reduce the free cho-
lesterol content of hepatocytes and thus may lead to the dys-
regulation of the key enzymes that are involved in choles-
terol homeostasis. Indeed, studies in animals with experi-
mental nephrosis revealed an upregulation of HMG-CoA 
reductase [57] as well as a relative reduction of cholesterol 
7 -hydroxylase [58]. All the aforementioned mechanisms in 
concert may result in the increased concentration of LDL-
cholesterol in individuals with NS.  

 Chronic kidney disease patients, with or without heavy 
proteinuria, display important qualitative alterations in LDL 
metabolism. The proportion of small dense LDL particles, 
which is considered to be highly atherogenic, is increased 
[59, 60]. Small dense LDL is a subtype of LDL that has high 
propensity to penetrate the vessel wall, becomes oxidized 
and triggers the atherosclerotic process.  

 In HD patients the serum lipid concentrations resemble 
those of predialysis patients with CKD, which means that 
total and LDL cholesterol levels are generally normal, 
whereas the subfractionation of apolipoprotein B-containing 
lipoproteins usually reveals a predominance of small dense 
particles [60, 61]. On the other hand, CAPD patients exhibit 
a more atherogenic lipid profile that is characterized by 
higher total and LDL cholesterol values and increased con-
centrations of small dense LDL and apolipoprotein B [47, 
60, 62]. A number of possible factors associated with the PD 
treatment may explain those alterations in lipoprotein me-
tabolism. It is known that CAPD patients lose substantial 
amounts of plasma proteins into the peritoneal dialysate. 
This protein loss may, in turn, stimulate the hepatic synthesis 
of albumin and other liver-derived proteins, including cho-
lesterol-enriched lipoproteins [63-65]. It should be also men-
tioned that, in CAPD patients, substantial amounts of apol-
ipoproteins and intact lipoproteins are lost via the peritoneal 
cavity. However the pathophysiological significance of these 
loses remains unclear [66, 67].  

 Finally, recent studies have investigated the role of the 
administration of the phosphate-binding resin sevelamer hy-
drochloride in the levels of plasma cholesterol and apolipo-
protein B in HD and PD patients. It has been shown that se-
velamer hydrochloride significantly reduces the concentra-
tions of total cholesterol and apolipoprotein B in HD patients 
[68]. Obviously, the cholesterol-lowering properties of this 
compound are irrelevant to phosphate reduction and can be 
mainly attributed to its bile acid sequestrating properties, 
resembling cholestyramine effect. It is likely that the use of 
sevelamer would result in a similar effect in CAPD patients. 

LIPOPROTEIN (a) (LP(a)) AND CKD 

 Lp(a) represents an LDL-like particle distinguished from 
LDL by the presence of apolipoprotein(a) [apo(a)], which is 
attached to apolipoprotein B-100 molecule through disulfide 
linkage [69]. Apo(a) is highly homologous to the plasma 
protease zymogene plasminogen and thus it has been sug-
gested that Lp(a) may promote thrombogenesis by inhibiting 
fibrinolysis [69]. Studies in healthy individuals and in pa-
tients with CKD have shown that serum Lp(a) levels are 
strongly and negatively associated with apo(a) isoform size. 
Indeed, subjects who have low molecular weight (LMW) 
apo(a) isoforms show on average higher Lp(a) concentra-

tions compared to those who have high molecular weight 
(HMW) isoforms [70]. The large concentration gradient of 
Lp(a) between aorta and the renal vein [71] as well as the 
identification of apo(a) fragments in urine [72] suggest that 
the kidney may actively participate in the degradation of 
Lp(a). Thus, it is not surprising that patients with primary 
kidney diseases (even those with normal GFR values) usu-
ally exhibit markedly elevated concentrations of Lp(a) [73, 
74] as well as increased concentrations of LDL-unbound 
apo(a) [75]. However, recently published studies indicate 
that the negative association between renal function and 
Lp(a) levels is phenotype-specific. Thus, predialysis CKD 
patients with HMW apo(a) isoforms tend to have much 
higher Lp(a) values than apo(a) phenotype-matched healthy 
controls, whereas patients with kidney diseases who exhibit 
LMW apo(a) isoforms have similar Lp(a) concentrations 
with phenotype-matched healthy individuals, who already 
have high Lp(a) levels [69, 76]. It is worth mentioning that 
prospective studies identified small apo(a) isoform size and 
not Lp(a) level as an independent predictor of total and car-
diovascular mortality in patients with CKD [77, 78]. 

 The isoform-specific increase in plasma Lp(a) was also 
observed in HD patients [79, 80]. The malnutrition and in-
flammation and, mainly, the decreased clearance of apo(a) in 
HD patients, have been implicated in this procedure [80-83]. 
In contrast, in CAPD patients, increases in plasma Lp(a) 
levels occur in all apo(a) isoform groups, probably as a con-
sequence of the pronounced protein loss and the subse-
quently increased production of this lipoprotein in the liver 
[79, 84, 85]. Similarly to CAPD patients, individuals with 
nephrotic range proteinuria exhibit increased concentrations 
of Lp(a) that is not phenotype-specific [86, 87].  

HIGH DENSITY LIPOPROTEIN (HDL) AND CKD 

 The main function of HDL is the transport of surplus 
cholesterol from the arterial wall to the liver for excretion. 
This process, which is commonly called ‘reverse cholesterol 
transport’, is critical for cellular cholesterol homeostasis and 
protection against atherosclerosis. Moreover, HDL serves as 
a potent endogenous inhibitor of inflammation, platelet ad-
hesion and LDL oxidation, because of a number of HDL 
associated apolipoproteins (mainly apolipoprotein AI) and 
enzymes (paroxonase-1, platelet-activating factor acetylhy-
drolase and lecithin-cholesterol acyltransferase (LCAT) [88]. 
Several epidemiological studies have demonstrated that HDL 
cholesterol is a negative risk factor for atheroscerosis [89]. 
Patients with CKD have, generally, reduced plasma HDL-
cholesterol levels compared to individuals with normal renal 
function [19, 90, 91]. This can be attributed to several 
mechanisms. Thus, patients with impaired renal function 
usually exhibit decreased levels of apolipoproteins AI and 
AII (the main protein constituents of HDL) [91], diminished 
activity of LCAT (the enzyme responsible for the esterifica-
tion of free cholesterol in HDL particles) [92, 93], as well as 
increased activity of cholesteryl ester transfer protein 
(CETP) [94] that facilitates the transfer of cholesterol esters 
from HDL to triglyceride-rich lipoproteins thus reducing the 
serum concentrations of HDL-cholesterol. In addition to 
their reduced efficiency as cholesterol acceptors, HDL parti-
cles from individuals with impaired renal function have less 
effective antioxidative and anti-inflammatory function. This 
impairment can, at least in part, be attributed to the reduction 
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in the activities of HDL-associated enzymes, such as par-
aoxonase (an enzyme that inhibits the LDL oxidation) [95, 
96].  

 Hemodialysis and PD procedure may also have a con-
tributory role in the reduced HDL cholesterol levels of dialy-
sis patients [39, 47]. Thus, in dialysis patients the type of 
membrane and dialysate used in HD procedure may influ-
ence the HDL-cholesterol levels. It has been shown that the 
use of high-flux instead of low flux membranes is associated 
with an increase in apolipoprotein AI and HDL-cholesterol 
values. [97, 98]. In addition, the type of dialysate may also 
significantly affect the serum levels of lipoproteins in HD 
patients. Indeed, it has been shown that the use of bicarbon-
ate dialysate may result in higher HDL-cholesterol concen-
trations than the use of acetate dialysate [99]. 

DYSLIPIDEMIA AS A RISK FACTOR FOR CARDIO-

VASCULAR DISEASE IN CKD 

 It is well known that dyslipidemia represents an impor-
tant (maybe the most important) risk factor for the develop-
ment of cardiovascular disease (CVD) in the general popula-
tion. Indeed, large-scale epidemiological studies revealed a 
lineal relationship between total and LDL-C values and the 
incidence of ischemic events in both primary and secondary 
prevention individuals, whereas the reduction in the concen-
trations of these parameters by means of diet, drug therapy 
or surgery is followed by an impressive reduction in the fu-
ture cardiovascular risk [17]. On the other hand, the role of 
dyslipidemia in the pathophysiology of atherosclerotic dis-
ease in patients with impaired renal function remains contro-
versial. Thus, some studies have shown a positive associa-
tion between cholesterol values and the risk for cardiovascu-
lar events in CKD individuals [100], whereas others failed to 
find any significant correlation [101, 102]. Finally, some 
other studies suggested an inverse relationship between se-
rum cholesterol values and mortality in ESRD individuals, a 
phenomenon also known as “reverse epidemiology” [101, 
103, 104]. Although the precise causes of this significant 
deviation from what is observed in the general population 
have not been established, it has been proposed that the pres-
ence of phenomena such as inflammation or protein energy 
wasting (conditions very common in ESRD patients) may 
significantly confound the relationship between the tradi-
tional risk factors for CVD and mortality in this patient 
population [105, 106]. In other words, ESDR patients free of 
these complications behave exactly as individuals with nor-
mal renal function, whereas in the presence of these condi-
tions low rather than high cholesterol values predict a poor 
outcome. [105, 106]. In agreement with this hypothesis the 
statistical adjustment for markers of inflammation and/or 
malnutrition in some studies restores the positive association 
between serum cholesterol values and mortality in CKD in-
dividuals[105, 106]. However, it must be mentioned that the 
aforesaid assumptions were not confirmed by the results of 
recent studies. Indeed, Kilpatrick et al. [107] in a cohort of 
15.859 HD patients showed that the positive relationship 
between cholesterol values and cardiovascular death risk 
may be confined to certain racial subgroups such as black 
HD patients. These discrepancies clearly show that further 
studies are needed to delineate the impact of lipoprotein con-
centrations on total and cardiovascular risk in individuals 
with ESRD. 

DYSLIPIDEMIA AS A THERAPEUTIC TARGET IN 

CKD 

 Despite the uncertainty that surrounds the role of dyslipi-
demia in the pathogenesis of atherosclerotic disease in CKD 
individuals, based on the extremely high cardiovascular mor-
tality that characterizes this patient population, the Work 
Group for Kidney Disease Outcomes Quality Initiative 
(K/DOQI) proposed the adoption of Adult Treatment Panel 
(ATP) III LDL-cholesterol targets for individuals with 
ESRD and suggest the aggressive treatment of lipid disorders 
[108, 109]. However, recent studies indicate that the use of 
lipid-lowering medications in individuals with impaired re-
nal function is limited, whereas a small minority of those 
receiving hypolipidemic drugs achieves therapeutic targets 
[110, 111]. It is possible that the most important factor that 
limits the use of hypolipidemic drugs in individuals with 
CKD is the contradictory results of the studies that tried to 
delineate the effects of statins on total and cardiovascular 
mortality in this patient population. It is well known that 
statins are by far the most commonly prescribed hypolipi-
demic drugs in the general population and numerous large, 
randomized, prospective studies have shown that their use is 
accompanied by an impressive reduction in the incidence of 
cardiovascular events [112]. On the other hand, the benefi-
cial effect of statin administration on cardiovascular morbid-
ity and mortality in individuals with CKD seems to be re-
lated to the severity of renal dysfunction. Indeed, in several 
large, prospective, placebo-controlled trials of statins, post 
hoc analyses of subgroups with mild to moderate CKD 
(stages 1-3) revealed a significant reduction in cardiovascu-
lar morbidity and mortality independently of the baseline 
lipid values and the presence or the absence of diabetes and 
coronary artery disease [113-118]. The same results were 
also obtained by the study of the prespecified subgroups of 
individuals with impaired renal function in the HPS [109, 
119] and ASCOT-LLA [120] studies that utilized simvas-
tatin and atorvastatin, respectively. A recently published 
metaanalysis that included 26 studies (about 25.000 partici-
pants) revealed that the use of statins in predialysis individu-
als with CKD is followed by a significant reduction in all-
cause and cardiovascular mortality by approximately 
20%[121]. Interestingly, the rate of adverse events was simi-
lar in patients receiving statins and placebo. These results 
suggest that the use of statins for the prevention of ischemic 
events in dyslipidemic individuals with early CKD seems to 
be a safe, reasonable and evidence-based approach. 

 Although epidemiological studies have shown that the 
use of statins in individuals receiving maintenance hemo-
dialysis is accompanied by a reduction in cardiovascular 
mortality [122-124], the prospective, randomized trials that 
tested the potential beneficial effect of statins in this patient 
population revealed disappointing results. The 4D (Die 
Deutsche Diabetes Dialyse) trial enrolled 1255 diabetic sub-
jects who had been on maintenance HD for less than 2 years 
and were randomized to receive either placebo or 20 mg/day 
of atorvastatin [125]. Overall, after a mean follow-up period 
of 2.4 years atorvastatin did not significantly reduce the risk 
of the composite primary end point (cardiovascular death, 
nonfatal myocardial infarction and stroke), despite a signifi-
cant 42% reduction in LDL-cholesterol concentration [126]. 
Although this study had several potential limitations [the 
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majority of cardiovascular events were possibly non-
ischemic in nature, a significant proportion of individuals in 
the placebo arm (about 15%) also received a non-study 
statin, the study was conducted exclusively in patients with 
diabetes mellitus and the extrapolation of its findings to non-
diabetic subjects was questionable etc], it raised important 
concerns about the efficacy of statin administration in indi-
viduals with ESRD. Similar findings were also reported in a 
small Scandinavian study that showed a significant decrease 
of cardiovascular end points after atorvastatin administration 
in predialysis patients with CKD but no effect in individuals 
who were on maintenance HD [166].  

 The publication of the results of AURORA (A Study to 
Evaluate the Use of Rosuvastatin in Subjects on Regular 
Hemodialysis: An Assessment of Survival and Cardiovascu-
lar Events) study few months ago [127], led to the concep-
tion of “a point of no return”, i.e. a point in the deterioration 
of renal function beyond which the beneficial effect of stat-
ins in cardiovascular morbidity and mortality is offset by the 
uremic environment. AURORA study was a prospective, 
double-blind trial involving 2775 individuals on maintenance 
HD who were randomized to receive 10 mg of rosuvastatin 
per day or placebo. After a median follow-up period of 3.8 
years, and despite the impressive reduction in LDL-C and C-
reactive protein concentrations (by 43 and 11.5%, respec-
tively), rosuvastatin administration had no effect on the pri-
mary composite end-point (nonfatal myocardial infarction, 
nonfatal stroke and cardiovascular death) or the individual 
components of the primary end-point. There was also no 
significant effect on all-cause mortality while none of the 
pre-specified secondary outcomes was influenced by active 
treatment.  

 Several mechanisms have been proposed for the explana-
tion of the failure of statins to improve cardiovascular out-
comes in individuals with advanced CKD. Thus, it has been 
suggested that the initiation and progression of atheroscle-
rotic disease in this population may have a different patho-
physiological basis (arterial wall calcification, inflammation 
etc), whereas other investigators emphasize that lipoproteins 
other than LDL (such as Lp(a), IDL etc) may play significant 
role in the initiation and progression of coronary atheroscle-
rosis [22, 128, 129]. Whatever the cause, it seems that in this 
patient population the decision for the administration of stat-
ins should be individualized. 

 Fibric acid derivatives (fibrates) represent another impor-
tant class of hypolipidemic medications. These drugs modify 
the expression of genes involved in lipoprotein metabolism 
and thus they reduce the concentrations of triglycerides, in-
crease the serum concentrations of HDL-cholesterol and 
induce a shift in LDL subfraction distribution towards larger 
and more buoyant particles [130]. Thus, theoretically, these 
drugs could represent an ideal option for the treatment of 
uremic dyslipidemia. However, it has been shown that the 
administration of fibrates (possibly with the exception of 
gemfibrozil) in individuals with impaired renal function is 
associated with an extremely high risk of muscular toxicity 
[131, 132]. In addition, these drugs also significantly in-
crease serum creatinine values. Although it has been pro-
posed that this increase does not represent a true deteriora-
tion in renal function but rather is due to increased metabolic 
production of creatinine, cases of nonreversible renal failure 

have been reported after fibrate administration [131]. In ad-
dition, the effect of fibrates on cardiovascular morbidity and 
mortality in individuals with impaired renal function has not 
been extensively studied. Thus, although an observational 
study suggested that the use of fibrates in patients with im-
paired renal function does not reduce total mortality [122], a 
post hoc analysis of the secondary prevention VA-HIT study 
revealed that the administration of gemfibrozil in individuals 
with moderate CKD reduced the risk of the primary end 
point (coronary death or nonfatal myocardial infarction) by 
27% [133]. For these reasons, it seems reasonable that fi-
brates should be used only in the subpopulation of patients 
with CKD who exhibit extremely high triglycerides values 
(greater than 500 mg/dl)[131]. In these cases, the risk of 
acute pancreatitis justifies the use of gemfibrozil that is the 
fibrate of choice in individuals with impaired renal function 
[131]. The administration of omega-3 polyunsaturated fatty 
acids may also have a role in the management of this ex-
tremely rare condition [134]. 

 A number of other hypolipidemic drugs that are increas-
ingly used in the general population (such as niacin, omega-3 
polyunsaturated fatty acids and ezetimibe) may also have 
important roles in the management of uremic dyslipidemia. 
However, although small studies have documented the bio-
chemical efficiency and the tolerability of these substances 
in patients with chronic kidney disease, no prospective stud-
ies with clinical end-points have proved their efficiency in 
terms of cardiovascular morbidity and mortality reduction. 
Further studies are needed to delineate the role of these drugs 
in the treatment of dyslipidemia in individuals with CKD. 

CONCLUSIONS 

 Dyslipidemia is a very common complication of CKD. 
Disturbances in lipoprotein metabolism are evident even at 
the early stages of CKD and usually follow a downhill 
course that parallels the deterioration in renal function. Re-
cently published studies indicate that dyslipidemia in these 
patients may actively participate in the pathogenesis of CVD 
as well as in the deterioration of renal function. Thus, we 
believe that the current evidence dictates the use of statins in 
patients with mild to moderate CKD. On the other hand, in 
subjects with ESRD the decision for the institution of lipid-
lowering therapy should be individualized. Thus, in indi-
viduals with established CVD as well as in those who run a 
high risk for acute pancreatitis due to severe hypertriglyc-
eridemia the administration of hypolipidemic drugs (statins 
and gemfibrozil, respectively) is a safe and reasonable ap-
proach. However, it should be kept in mind that further stud-
ies are needed to delineate the clinical efficacy of these in-
terventions.  
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