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Abstract: Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium,  

periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors  

depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics  

and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical 

structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of  

the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes  

the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules  

in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardio-

vascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these 

phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and  

fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. 
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INTRODUCTION 

 Investigations into the behavior of physiological systems 

have traditionally placed great emphasis on the concept of 
homeostatic equilibrium, and how disturbances in homeo-

static control can produce disease. The underlying assump-

tion of this concept is that physiological systems exist at  
a steady state which can be switched to other states by a  

particular stimulus. However, biological systems are capable 

of more complex behaviors; there are patterns, rhythms and 
tempos to almost all biological processes from the level of 

the cell to that of the whole body. It is therefore important to 

take a step back and ask what the behavior of the system 
really is. Five kinds of physiological behavior are possible, 

and systems have the ability to move between them. Each 

has a precise mathematical definition, but can be understood 
intuitively as follows: 

1. Equilibrium describes a system at steady state, the classic 
view of physiological systems. 

2. Periodicity describes a system with a simple rhythm in 
which a cycle is repeated at a set frequency. This is seen 
in many circadian rhythms, such as the central and  
peripheral body clocks which control many of the other 
circadian rhythms in the body. 
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3. Quasi-periodicity describes a more complex behavior 
produced because the system cycles with at least twofre-
quencies whose ratio is not a rational number. This is a 
common behavior in physiological systems; it is seen in 
the electrophysiological behavior of the heart and the 
nervous system.  

4. Deterministic chaos describes a system which is no 
longer confined to repeating a particular rhythm, and  
is free to respond and adapt. As is explained in more  
detail below, the system is constrained only by ‘boundary  
conditions’ imposed to prevent it from collapsing.  
Chaos is seen in a wide range of physiological systems, 
including the cardiovascular system.  

5. Random behavior represents a breakdown of order in the 
system. Its behavior is now uncoordinated. 

 The control of homeostatic equilibrium is the easiest  
behavior to study using our existing technological and 
mathematical tools, and this is why it was the first behavior 
to be systematically investigated by the scientific method. 
The study of circadian rhythms and temperospatial organiza-
tion has led us into the periodic and quasi-periodic behav-
iors. Now the ability to study chaotic behavior is within 
reach, and we are standing on the edge of a new frontier  
in which we can begin to ask unbiased questions about the 
behavior of a system. Why is this important? The first reason 
is that the type of behavior determines the approach which 
can be used to study it. As discussed below, equilibrium, 
periodicity and quasi-periodicity can be studied using the 
reductionist approach, whereas deterministic chaos cannot. 
 



Deterministic Chaos and Fractal Complexity in the Dynamics The Open Cardiovascular Medicine Journal, 2009, Volume 3    111 

The second reason is that it allows us to ask deeper questions 
about biology. What advantages do the different behaviors 
confer, how are they created and what are the consequences 
of moving from one kind of behavior to another? The aim of 
this review is to discuss how the emerging mathematical 
concepts of chaos theory and fractal mathematics are allow-
ing us to approach these questions. The discussion will be 
non-mathematical, with an emphasis on the concepts, and 
will focus on the cardiovascular system. The cardiovascular 
system is a rich area for the study of dynamics, and it is a 
system in which clinical applications for chaos theory have 
already been found. 

THE APPLICATION OF DYNAMICS TO THE STUDY 
OF PHYSIOLOGICAL BEHAVIOR 

 Dynamics is the branch of physics concerning the study 
of how motion is produced by the action of forces. When 
applied to biology, it is used to study how the behavior of a 
system is created and controlled. A system is considered 
dynamic if it is deterministic and obeys the causality princi-
ple. Determinism is a philosophical proposition, which states 
that every event is determined by an unbroken chain of  
prior occurrences. The causality principle, derived from  
Descartes’ Third Meditation, states that every effect has an 
antecedent and proximate cause. Random behavior is not a 
dynamic because it does not meet these two stipulations. A 
dynamic system can be linear or non-linear. In a linear  
system, the behavior of the entire system can be deduced by 
adding the behaviors of each of its components together. 
Small causes produce small effects and large causes, large 
effects. Equilibrium, periodicity and quasi-periodicity are 
examples of linear dynamics. The conventional reductionist 
approach excels in the study of linear systems, because it is 
possible to derive a complete description of the system by 
breaking it down into its component parts. 

 In a non-linear system, the parts of the system are not 
simply added together, but participate in a cascade of ampli-
fication. Because a non-linear system is more than the sum 
of its parts, a complete explanation of its behavior cannot be 
obtained by the reductionist approach. In the physical world, 
non-linear dynamics usually relate to discontinuous ‘sudden’ 
phenomena such as tornadoes, explosions or breakages. The 
non-linear dynamic most frequently encountered in biology 
is deterministic chaos. In a chaotic system, small changes in 
the initial conditions are amplified and have profound effects 
on the final state so that the behavior of such a system cannot 
be predicted over the long term. It is perhaps unfortunate that 
the term ‘chaos’ is used to describe this because mathemati-
cal chaos does not refer to complete disorder. It refers to an 
orderly system whose behavior is so complex that it appears 
to be random; the human mind cannot see the patterns in the 
raw data because it lacks the computational power to do so. 
However, the beauty of mathematics is that it gives us the 
power to transcend the limits of our intuitive understanding. 
The mathematics of chaos theory applies transformations  
to the raw data which ‘force’ the underlying patterns to be 
revealed. To understand how this is done, and what determi-
nistic chaos is, it is worth considering the history of how 
chaotic behavior was first discovered. 

 Mathematical chaos was observed independently by a 
number of scientists and mathematicians in different fields 

before taking shape as a theory in the second half of the 20
th

 
century [1]. It was officially (and accidentally) discovered by 
Edward Lorenz in 1963 [2]. Lorenz was a meteorologist who 
was running a series of weather simulations, and wanted to 
see a particular simulation again. To save time, he entered 
data from a previous computer readout and started the  
simulation from its halfway point, expecting that this would 
make no difference to the final results. To his surprise, he 
found that the results of the new simulation were markedly 
different from the previous one, and traced the fault to the 
computer printout. The printout had approximated the 6  
figure readout of the computer to 3 figures. This small dif-
ference in initial conditions (using a 3 rather than a 6 digit  
input) was enough to substantially alter the outcome of  
the simulation. Indeed, it is now known that, in non-linear 
systems, these differences are amplified by iteration in an 
exponential manner. This is the ‘butterfly effect’: a creature 
as meek as a butterfly can trigger a storm thousands of miles 
away simply by beating its wings. It does so because the tiny 
initial displacement of the air is amplified in a cascade. This 
phenomenon is called the ‘sensitivity to initial conditions’. 
Lorenz concluded that, because of this phenomenon, the  
behavior of a chaotic system such as the weather can never 
be accurately predicted in the long term.  

 In 1901, Willard Gibbs pioneered the use of phase space 
to represent the state of a system. However, it was the  
Belgian physicist Ruelle who first used this approach to 
study the behavior of chaotic systems, and this resulted in 
the discovery of the attractors of a chaotic system [3]. Phase 
space is an abstract two or three-dimensional space in which 
the x, y and z- axes are used to represent key parameters 
which describe the state of the system. The state of the  
system at any given moment can then be represented as  
a point in phase space; the process by which data are  
mathematically converted into a point in phase space is 
called embedding. The state of a dynamic system is continu-
ously changing, and by plotting the different states of the 
system which arise over time on a phase space diagram, one 
obtains a graphical representation of all possible states of the 
system, and the behavior of the system is revealed (Fig. 1).  

 The motion of a dynamical system is driven by an under-
lying force, and most dynamical systems would come to  
rest in the absence of this force. Initial transient states of  
the system are therefore killed off with time and, under the 
influence of the driving force, the system evolves towards a 
particular state or behavior. If these events are followed in 
phase space, one sees that, given enough time, the state of a 
dynamical system evolves towards a particular set of points 
in phase space. This set is referred to as the attractor of  
the system, and this attractor is a property of a deterministic 
system [3]. A random system will never have an attractor. 
The attractor of a deterministic non-chaotic system can be a 
fixed point, a limit cycle (a periodic system) or a limit torus 
(a quasiperiodic system) (Fig. 1). In this case, the system is 
predictable, and will either loop continuously retracing the 
limit cycle or torus, or, in the case of a point attractor, settle 
at equilibrium. The attractor of a chaotic system is more 
complex and is referred to as a strange attractor. The points 
representing the state of the system loop endlessly within the 
boundaries set by the attractor, always towards a central 
point, but the trajectory traced by the point never repeats  
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itself. The strange attractor contains an infinite number of 
possible trajectories through which the state of the system 
can cycle. Strange attractors are always fractals (discussed 
below), taking on beautiful shapes in phase space, which 
resemble such forms as butterfly wings, swirling clouds, 
spider’s webs or leaves.[1] Physiological systems can change 
their dynamics and move between periodicity, quasi-
periodicity and chaos. In phase space, the attractor will 
change, ‘exploding’ into a chaotic attractor or ‘imploding’ 
into a limit torus or limit cycle. This phenomenon is termed 
‘bifurcation’. If the system is moving toward chaos, the  
bifurcations are cascading it. If the system is moving  
toward quasiperiodic or periodic behavior, the bifurcations 
are creating negative feedback loops to stabilize it. This phe-
nomenon gives the system a remarkable flexibility  
(see [1, 4-7] for a more complete discussion). 

FRACTAL MATHEMATICS 

 This section provides a brief introduction to fractals and 
their properties. The reader is referred to a number of excel-
lent books for a more complete discussion [4, 8-11]. Fractal 
mathematics is a fundamentally new kind of geometry, and 
one which remains unfamiliar to much of the scientific, 
medical and general communities. It has three applications in 
biology: the study of physical structure, the study of the 
structure of processes in time and the study of the dynamics 
underlying behavior (the attractor of a chaotic system is  
always a fractal). Our understanding of the form of natural 
objects has been dominated by the concepts of Euclidian 
geometry and calculus. However, Euclidian geometry is  
unable to describe many of the exquisite patterns with which 
nature is replete, such as the shape of a cloud, a tree or a 
snowflake. One of the reasons for this is that objects in the 
natural world have features which extend over many scales, 
and examination of an object at finer scales reveals new  
previously unseen detail. Euclidian geometry fails to  
 

describe this because it can only deal with one scale at a 
time; it describes figures whose edges are flat or curved and 
misses the detail. 

 In the 1970’s, Benoit Mandelbrot reported a new kind of 
mathematics, which he called ‘fractal mathematics’ [10]. The 
term fractal was derived from the latin word fractus, mean-
ing broken, in order to reflect its defining features of self 
similarity and scaling. In the words of Mandelbrot, “ a fractal 
is a rough or fragmented geometric shape which can be split 
into parts, each of which is (at least approximately) a  
reduced-sized copy of the whole” [10]. Fractals can be  
observed throughout nature, from the small scale of atoms to 
the large scale of galaxies. The natural world is replete with 
examples: crystals, snowflakes, river networks, mountains, 
lightning, trees, webs, the list is long. The self-similarity of a 
fractal can be defined as perfect (geometrical) or statistical. 
Exact self-similarity represents the geometrically perfect 
fractal. A simple mathematical example of perfect self-
similarity is given by the Koch snowflake (Fig. 2A). Starting 
with a straight line, a Koch snowflake is generated by substi-
tuting the middle third of the line with an equilateral triangle 
and repeating the process many times. The iteration vastly 
increases the length of the figure’s perimeter. After 40  
iterations, a Koch snowflake generated from a 1-metre  
segment has a length which, if unwound, would stretch from 
the earth to the sun. Another example is the Mandelbrot set 
(Fig. 2B). 

 Nature never conforms to geometric ideals, and just as 
one would be hard-pressed to find a perfect sphere or cube in 
nature, one would be equally hard-pressed to find a fractal 
with perfect self-similarity. Most fractals in nature exhibit 
statistical self-similarity. Statistical self-similarity refers to a 
situation in which the fractal is approximately self-similar at 
different scales; the statistical properties of the part are pro-
portional to the statistical properties of the whole. Examples  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Possible states of a system represented in phase space. Equilibrium is represented as a point and periodic behavior as a cycle.  

Quasiperiodic behavior arises because the system is cycling with at least two frequencies whose ratio is not rational. A strange attractor is a 

sign of chaotic behavior, and has a low fractal dimension. The attractor shown is the Lorenz attractor. Random behavior produces a random 

scatter of points in phase space, with a high fractal dimension. 
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of such self similarity in the human body include self-similar 
invaginations of alveolae and the intestinal tract which  
increase the surface area for absorption, or the self-similar 
branching pattern of the dendritic, bronchial and vascular 
trees [5, 12-15]. An important extension of the fractal  
concept is that fractals are not only observed in physical 
structures; biological processes in time also exhibit fractal 
properties in that fluctuations at a given timescale resemble 
the fluctuations of the same process observed at a smaller 
timescale. A classic example of this is seen in recordings of 
ion channel currents; self-similar patterns of ion channel 
opening are observed over several timescales [16]. The other 
extension is that the attractor of a chaotic system is always a 
fractal, and fractal geometry therefore has a role to play in 
describing dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2A). The first four iterations of the Koch Snowflake. (B). A 

visual representation of the Mandelbrot set, one of the best-known 

fractals. 

 For a fractal system, the measurement of any parameter 

depends on the resolution at which the measurement is taken. 

If one is measuring length, for example, the value of the 

measured length would increase as the finer details are  

revealed. There is therefore no one ‘true’ value of the meas-

urement, but rather a relationship between the measurement 

and the resolution. This is referred to as a scaling relation-

ship, and it poses two fundamental challenges to our existing 

analytical tools. The first is modest. If a fractal physiological 

system is studied at different resolutions, the measurements 

obtained would be expected to differ, and this may explain 

some of the measurement discrepancies found in the litera-

ture [17]. Biological fractals, however, are usually only self-

similar over a few orders of magnitude, so this problem  

is overcome by studying the structure at the finest level of 

detail. The second challenge is profound, and it arises when 

studying fractal processes in time: fractals can have no mean 

and infinite variance! How is this possible?  

 We are used to using means and variances to describe 
datasets, and the sample mean we obtain by experiment is 
meant to reflect the population mean of the parameter. As the 
sample size is increased, the sample mean should approach 
the value of the population mean. This does not happen for 
fractals: as the sample size increases, the value of the sample 
mean continues to change and diverge to either zero or  
infinity, never approaching a ‘true mean’. This situation 
arises because the value of the parameter depends on the 
scale at which it is measured, and can therefore never have a 
single true value. Self-similarity at multiple scales can also 
affect variance, because smaller fluctuations in the data  
are amplified as the resolution is increased. The measured 
variance increases as the sample size or sample time  
increases, and tends towards infinity. This poses fundamen-
tal problems to the approach of statistical hypothesis testing 
(see [4] for review). Firstly, we always rely on the mean  
and variance of our measurements to define the parameters 
of the system being studied. However, if there is no mean 
and infinite variance, there is no way to determine what the 
parameters of the system are, so we have no way of detecting 
a change in those parameters. Furthermore, because there  
is no true mean of the system, the value of the calculated 
mean will be seen to change even if the underlying process 
remains unchanged. This means that, if we wish to look  
for changes in the state of a fractal system, we cannot use 
our existing analytical tools because they are essentially 
blind. 

 It is clear that we need new analytical tools to study  

fractals, but our ability to describe the properties of fractals 

is still rudimentary. The major parameter which has been 
described is the fractal dimension, a measure of a fractal’s 

space-filling properties. Put another way, fractal dimension 

measures the extent to which the irregularities of a fractal 
embedded on a curve spread out into the second dimension, 

or the extent to which the irregularities of a fractal embedded 

on a surface spread out into the third dimension. Fractals 
always have fractional dimensions (e.g. 1.7, 2.3 etc), which 

is a counter-intuitive idea when first encountered, but it can 

be understood by considering the familiar Euclidian shapes. 
Euclidian geometric shapes completely ‘break into’ the  

next dimension (e.g. line to square to cube) without creating 

detailed structure along their edges. The fraction (1.7, 2.3) 
represents the detail that Euclidian geometry misses; it  

describes the existence of a detailed structure along the edge 

of the shape. The dimension of the curve, surface or solid  
in which the fractal is embedded is referred to as the  

topological dimension, and is always an integer (1, 2 or 3). A 

fractal is defined mathematically as a set of numbers for 
which the fractal dimension is greater than the topological 

dimension [10].  

THE APPLICATION OF FRACTAL MATHEMATICS 
TO CHAOS THEORY 

 As discussed above, the attractors of a chaotic system  
are always fractals. The fractal dimension of the attractor 
provides an indication of how deterministic the system is. If 
the fractal dimension is low, then the data would have been 
generated by a deterministic system. If the fractal dimension 
is high, then the data would have been generated by a  
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random system. The reason for this can be understood  
intuitively as follows. As the fractal dimension increases,  
the form of the fractal is seen to disperse and increasingly 
resemble a random scatter of points. A random scatter  
of points in phase space is indicative of a truly random  
system.  

CIRCADIAN RHYTHMS 

 Equilibrium needs little discussion here; it has been a 
core concept of biology for decades. We can begin our con-
sideration of physiological behavior by briefly examining 
periodic behavior as exemplified by circadian rhythms.  
Circadian rhythms can be influenced by exogenous factors; 
indeed, exogenous factors (lifestyle, sleep patterns, stress) 
have a profound influence on the circadian rhythms of heart 
rate and blood pressure [18]. However, there is a component 
of the rhythms which is endogenous. These rhythms are  
cycles of behavior which are driven by an internal oscillator 
and repeat themselves on an hourly basis for ultradian 
rhythms or on a 24-hour basis for circadian rhythms [19]. 
The endogenous component of the circadian rhythms is regu-
lated by a circadian pacemaker or ‘clock’ which is intrinsic 
to the cell and self-sustaining. The clock maintains its func-
tion in the absence of environmental stimuli, but has a ‘reset’ 
mechanism which is responsive to environmental signals. 
The molecular basis for circadian clocks is a group of tran-
scriptional and translational feedback circuits which have 
evolved to have a periodicity of approximately 24 hours. 
There is a master circadian pacemaker in the suprachiasmatic 
nucleus (SCN) which regulates peripheral clocks located in a 
wide range of tissues [19, 20]. The SCN pacemaker receives 
information about the time of day from light signals deliv-
ered via the retinohypothalamic tract. The synchronization of 
the peripheral clocks is achieved by neurohormonal stimuli 
and, most importantly, metabolic cues [21, 22]. There are 
circadian patterns present in cardiovascular and hemody-
namic parameters such as heart rate, blood pressure, endo-
thelial function and fibrinolytic activity. These rhythms may 
have pathophysiological significance, because there are also 
diurnal variations in the incidence of acute cardiovascular 
events (myocardial ischemia and infarction, cardiac arrhyth-
mias, sudden death in heart failure) [23, 24]. The precise 
nature of the links between the rhythms and adverse cardio-
vascular events is the focus of much research. The peripheral 
clocks have been found to regulate a wide range of genes, 
including genes involved in metabolism, vascular integrity 
and responses to injury and pathological stimuli [20]. The 
function of the clocks can also be disrupted in disease states; 
this can manifest as a dampening of the oscillations  
(e.g. pathological cardiac hypertrophy) or a phase shift  
(e.g. diabetic cardiomyopathy) [25, 26].  

 Significant technological and analytical advances are 
needed before the dynamics of circadian clocks can be stud-
ied in detail. However, it is clear from existing evidence 
what the dynamics of the system are likely to be. The healthy 
state of this multi-oscillator system appears to be one of or-
derly, periodic, synchronous oscillations. Since the periodic-
ity of the clocks is essential to their function, any bifurcation 
away from this behavior would be self-defeating. The system 
needs to be far enough away from the border between order 
and chaos to prevent chaotic behavior, but also far enough  
from equilibrium to maintain periodic dynamics. This  

reliable order is bought at the price of a lack of flexibility. 
This disadvantage can be seen in the way the system  
responds to challenges. The central and peripheral clocks  
are slow to respond to permanent changes in the timing of 
the sleep-wake cycle (2 days for the central clock, 8 days for 
the peripheral clocks) [27]. This rigidity helps to prevent 
unnecessary adjustments of the clocks in response to, for 
example, an afternoon nap. However, in the presence of 
more permanent behavioral changes such as shift work, it 
may be an important cause of disease [20, 28].  

BLOOD FLOW AND VASCULAR FUNCTION 

 Although mean blood pressure exhibits a simple diurnal 
variation which is essentially periodic, the cardiovascular 
system is capable of more complex behaviors. These are 
generated both in the blood vessels and in the heart. Part of 
the complexity arises from the basic structure of the cardio-
vascular system. The heart and the vasculature contain struc-
tures which have a fractal-like appearance. Examples of 
structural fractals include the venous and arterial vascular 
trees, the organization of muscle fibres (bundles, fibres, fi-
brils, myofilaments), the arrangement of the His-Purkinje 
network in the heart and the structure of cardiac connective 
tissues (e.g. the chordae tendinae and aortic valve leaflets) 
[4, 5, 29, 30]. Living organisms possess complex, spatially 
distributed systems which depend on a vascular supply for 
their survival. The function of fractal networks such as the 
vascular tree is to achieve fast and efficient transport across 
these systems, and there is good evidence that the use of a 
fractal branching system minimizes the work of transport 
[31-33]. Although the scale-range of self-similarity is infinite 
for geometric fractals, in biology there is only a finite range 
over which self-similarity is observed. For the vascular tree, 
there are at least three orders of magnitude which are self-
similar, from the larger feeder vessels (c. 5mm for small 
mammals) to the smallest arterioles (c. 10-20μm for small 
mammals). The small capillary networks into which the arte-
rioles feed have a different topology to the rest of the vascu-
lar tree and are not part of the fractal network.  

 The fractal structure of the vasculature has profound  

consequences for animals, and it is worth pausing to reflect 

on this. One such consequence is physiological time. The 

classical Newtonian view of time is chronological time, in 

which time is viewed as being universal and above nature. 

This perspective of time is imposed by evolution in the form 

of ultradian and circadian rhythms, and we regulate our daily 

lives by it. However, Meyen proposed an alternative view in 

which time is related to variability and change, so that each 

self-contained system has its own time defined by specific 

events that occur within that system. Psychological time is 

an example of Meyen’s concept in which perceptions of the 

flow of time are dependent on the situation; time flies when 

we are busy, and grinds to a halt when we are waiting. The 

concept of physiological time arises from Meyen’s perspec-

tive and is defined by Boxenbaum as “a species-dependent 

unit of chronological time required to complete a species-
independent physiological event” [34].  

 In order to maintain body temperature in the face of an 
impaired ability to lose heat, all the physiological processes 
of a larger animal are slower than those of a smaller animal 
(heart rate, respiration rate, movement etc.); the heart rate of 
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an elephant is 30 beats per minute whereas that of a shrew is 
1000 beats per minute. However, a shrew and an elephant 
get through the same number of heartbeats and respirations 
over the course of their lives (approximately 200 million 
breaths and 800 million heartbeats), and therefore live an 
equivalent amount of physiological time [35]. In chronologi-
cal time, the elephant takes longer to use up its allotted  
beats and breaths, and therefore lives longer by living 
slower. It is well known that the relationship between the 
pace of physiological processes and animal size obeys a 
power-law function, so does it have a fractal origin? Meta-
bolic rate is limited by the rate at which nutrients and oxygen 
can be supplied to the metabolic tissues, and this supply is 
constrained as the transport distances covered by the trans-
port network are increased. The transport network, as  
discussed above, is fractal over three orders of magnitude. In 
the model proposed by Brown, Enquist and West, the fractal 
nature of the transport networks explains the power law  
relationship between metabolic rate and animal size [36, 37]. 
The implication of this theory is that the fractal structure  
of the vasculature has, over the course of evolution, exerted 
an influence on species’ physiological time and ultimately  
on their lifespan. It is remarkable that a fractal, which can 
often be represented by very simple equations, can influence 
a species’ own experience of time and ultimately set  
constraints on how long it will live.  

 The basic pattern of blood distribution is fractal, and this 
is imposed both by the anatomy of the vascular tree and by 
the local regulation of vascular tone [38-46]. Superimposed 
upon this basic pattern is a complex rhythm of vascular flow. 
It is well-established that blood vessels exhibit rhythmic 
changes in diameter which beget rhythmic changes in resis-
tance [47, 48]. This behavior has been found to bifurcate 
between quasi-periodicity and chaos. The origin of the cha-
otic behavior lies not in the heart rate or neuronal control of 
the blood vessels, but in chaotic dynamics of the vasomotor 
response [49-51]. The chaotic behavior is produced by the 
interaction of two calcium oscillators in the cytoplasm, one 
of which is a fast oscillator maintained by voltage-dependent 
calcium uptake, and the other of which is a slower oscillator 
maintained by calcium-induced calcium release [52]. Chaotic 
behavior is prevented by nitric oxide and various purines, 
and inhibition of either of these is associated with the induc-
tion of chaotic vasomotion [6, 53]. Chaotic behavior can be 
induced by physically decreasing the perfusion pressure. 
These data indicate that blood pressure can act as a toggle 
between order and chaos in the control of vasomotion [49]. 
Vasodilator substances which lower the local pressure by 
increasing vessel diameter maintain the system in periodic 
dynamics.  

 Vascular conductance is improved by periodic sine-wave 

vasomotion, so the appearance of chaotic behavior in the 

blood vessel is detrimental to blood flow [53, 54]. Chaotic 

behavior has been observed in systemic blood pressure,  

and has been suggested to be partly attributable to chaotic 

fluctuations in peripheral vascular resistance produced by 

chaotic vasomotion [55-57]. However, if blood pressure 

variability is examined in the whole animal, further informa-

tion about the origin of chaotic behavior is revealed. Nitric 

oxide inhibitors decrease the chaotic behavior of blood  

pressure variability, which is consistent with their influence  

on chaotic vasomotion [58, 59]. Intriguingly, blockade or 

stimulation of adrenergic -receptors has the same effect 

[58, 59]; the decrease in complexity produced by the agonist 

could be related to a decrease in sympathetic tone mediated 

by the baroreceptor reflex. Denervation of the baroreceptors 

also decreases chaotic behavior of blood pressure variability 

[60]. Blockade of -adrenoceptors or of the parasympathetic 

nervous system with atropine has little or no effect on overall 

complexity [58, 59], suggesting that chaotic behavior is 

regulated by the sympathetic nervous system at the level of 

the resistance vessels. Overall, these results suggest that cha-

otic behavior of the blood pressure is likely to reflect the 

regulation of tone in the resistance vessels; periodic vasomo-

tion is induced by any factor which decreases the local pres-

sure, and the influence of the sympathetic nervous system on 

blood pressure variability may reflect a local influence on 

vasomotion mediated by changes in local pressure. However, 

blood pressure is regulated by a wide range of factors and  

it is likely that there are other contributors to the chaotic  
behavior evident in blood pressure variability. 

FRACTAL COMPLEXITY AND CHAOTIC BEHAV-
IOR IN THE HEART 

 It is well established that beat-to-beat variability exists in 
the heart rate; ‘regular sinus rhythm’ is, in fact, anything but. 
This variability was classically regarded as random, but is 
now known to exhibit fractal properties in time, and to  
exhibit chaotic behavior, indicating that the variability is  
in fact deterministic. The analytical methods employed to 
study this determinism have been reviewed recently [9], so 
this discussion will focus primarily on the concepts. It is 
presently unclear what the underlying mechanism is for  
cardiovascular chaos, although it appears to be related to  
the function of the autonomic nervous system. Heart rate 
variability and the sensitivity to initial conditions are attenu-
ated when the parasympathetic nervous system is blocked  
by atropine, and enhanced by blockade of the sympathetic 
nervous system using the -blockers propanolol or atenolol 
[58, 59, 61, 62]. Chaotic behavior is not influenced by clas-
sic pharmacological modulators of the blood vessels such as 
nitric oxide synthase inhibitors or agonists and antagonists of 

-adrenergic receptors, suggesting that it is the direct action 
of the autonomic nervous system on the heart which is im-
portant [58, 59, 61, 62]. It is clear that chaotic behavior is 
increased when parasympathetic activity exceeds sympa-
thetic activity; this effect is demonstrable when the sympa-
thetic and parasympathetic nervous systems are inhibited. 
However, the reflex cardiac parasympathetic cardiac activity 
induced by nitric oxide synthase inhibitors does not produce 
an increase in cardiac chaotic behavior. This may simply 
reflect the fact that the parasympathetic nervous system is 
already exerting its maximum effect on the heart rate dynam-
ics; removal of sympathetic drive may further increase chaos 
in part because it is a physiological antagonist of the  
parasympathetic drive, acting at a distinct site. Differences  
in the degree of chaos seen in the heart are likely to reflect 
differences in the ‘drive’ which maintains the dynamics of 
the system; the bifurcation of the system from order to chaos 
should be a threshold effect.  

 The dynamics of the heart rate can also be examined  
using fractal analysis, and heart rate variability has been  
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found to exhibit self-similarity [63, 64]. The importance of 
the fractal structure is that the self-similarity extends over 
many timescales; this confers the effect of memory on the 
system. The heart is able to repeat beating patterns it has 
previously used. However it is not ‘remembering’ the 
rhythms per se; by assuming a fractal structure in time,  
the system is using a basic law of mathematics to achieve  
the effect of memory. Fractal structure appears to be related, 
at least in part, to the presence of chaotic behavior and can 
be lost by bifurcations towards either order or randomness.  

 If one studies the effects of pharmacological interven-

tions on fractal complexity of the time series, the patterns are 

not the same as those seen for chaotic behavior. Denervation 

of the heart increases the fractal complexity of the heart rate, 

indicating that the fractal complexity has its origin in the 

heart itself, and is modulated by the autonomic nervous  

system [65]. Intriguingly, both the sympathetic and the para-

sympathetic nervous systems appear to decrease the fractal 

complexity of the heart rate variability [66-69]. Chaotic be-

havior and fractal complexity of the time-series therefore 

reflect different properties of the heart which respond differ-

ently to pharmacological interventions; atropine, for exam-

ple, decreases chaotic behavior but increases fractal com-

plexity. What are the differences between chaotic behavior 

and fractal complexity? Fractal analysis essentially reveals 

the structure of the signal, whereas chaos theory examines 

the underlying dynamics of the system that generates  

the signal. Fractal structure is therefore a more superficial 

measure of the state of the system, but it is easier to apply 

and has found clinical applications.  

 Fractal complexity and chaos are related to pathology in 

two clinical scenarios. In the setting of acute cardiovascular 

events such as myocardial infarction or arrhythmias,  

increased fractal complexity is associated with increased 

mortality, and is a superior predictor of mortality compared 

with more conventional measures of heart rate variability 

[65, 70-76]. The reason for this correlation is unknown. If 

one considers the dynamics of the heart in this setting,  

arrhythmias appear to represent a state in which the system is 

driven away from the border between order and chaos and 

towards true randomness; in this context, the increased chaos 

may be regarded as harmful. There has been much discus-

sion over whether increases or decreases in chaotic behavior 

are beneficial or harmful in the context of acute cardiac 

events. There are two aspects of chaos to consider. The first 

is where the chaos occurs. Helpful chaotic behavior is 

probably due to chaotic behavior in the sinoatrial node.[77] 

However, if chaotic behavior appears independently in the 

rest of the conduction system, this may interfere with the 

cardiac cycle and be harmful. The second is whether the  

system is being maintained close to the border between order 

and chaos; any movement away from this border could be 

harmful, be it towards randomness or periodicity. There are 

therapeutic implications for this. It has been found that, with 

the use of properly timed stimulation delivered through 

pacemakers, the heart can be stimulated to bifurcate from 

chaos to periodic behavior (chaos control) or from periodic  

behavior to chaos (chaos anti-control). This approach has 

been used as a novel approach to treat arrhythmias, and both 

chaos control and chaos anti-control have been advocated as 

strategies [78-80]. 

 By contrast, in the setting of chronic heart failure, fractal 

complexity is decreased, and in this case it is the decrease in 

complexity which is associated with increased mortality [81-

84]. When fractal complexity breaks down, the breakdown 

can reflect a cascading of the system into true randomness or 

a reversion into periodic order. Heart failure may cascade the 

system in either direction, producing random or periodic 

behavior; in both cases the fractal complexity is seen to  

decrease, and in both cases the effect is associated with  

increased mortality [85]. Fractal complexity and chaotic  

behavior of the heart have both been found to decrease with 

ageing, and this loss of complexity is also believed to be 

detrimental (see [7, 86] for recent reviews).  

 Why is the loss of chaotic behavior harmful? Loss of 

chaotic behavior clearly creates a loss of flexibility in  

the system. However, it also leads to a loss of information 

storage and generation [5, 87, 88]. The ability to store and 

transmit information is lost because random behavior is 

meaningless, and periodic behavior simply repeats the same 

information over and over again. This is reflected in the loss 

of fractal complexity in the heart rate signal; the ‘memory 

effect’ conferred by the fractal structure is lost. Chaotic  

behavior is unpredictable behavior, and unpredictable behav-

ior allows for a physiological ‘freedom of expression’;  

the key to generating useful information is the ability to 

change. In a recent review, Goldberger [89] pointed out  

that many disease states could be regarded as producing  

a breakdown in complexity, leading to ordered periodic  

behaviors: 

 “To a large extent, it is these periodicities and highly-

structured patterns – the breakdown of multi-scale complex-

ity under pathological conditions – that allow clinicians  

to identify and classify many pathologic features of their 

patients.” [89].  

 Where does chaotic behavior in the heart come from? 

Chicken embryo heart cells provide one of the best examples 

of physiological chaos ever observed [90, 91]. Pacing is a 

basic property of cardiomyocytes, and chicken embryonic 

heart cells are seen to spontaneously beat in a regular  

fashion. When an external electrical stimulus is applied,  

the timing of the next endogenous beat is altered; it can  

occur sooner or later. The system is therefore driven by  

two bio-oscillators; the internal oscillator of the cell’s own 

pacing rhythm, and the external electrical impulses [90, 91]. 

The cells will beat with regular periodicity in response to 

some external rhythms, but will revert to their own endoge-

nous rhythms in response to others. This is chaotic behavior, 

with bifurcations induced by the external applied rhythm. 

The effect is to introduce beat to beat variability. In the intact 

heart, the property of spontaneous self-excitation is a  

property of all the excitable tissue found therein, but the 

pacemaker of the heart is the sino-atrial node. The path  

of excitation from the sinoatrial node, through the atria to  

the atrioventricular node and then to the His-Purkinje  

network generates the classic familiar pattern of the  

electrocardiogram (ECG). Analysis of the ECG reveals that 
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there are irregularities in the record, the same beat-to-beat 

variability observed when heart rate data are analyzed, and 

analysis of the ECG has revealed evidence of chaotic behav-

ior [4, 92, 93]. In the normal setting, this chaos is good. 

Studies of the spatial evolution of the cardiac electrical activ-

ity have revealed that the electrical behavior of the heart can 

be understood, in part, in terms of reaction-diffusion proc-

esses. These processes produce spiral waves, a known pre-

cursor to chaotic behavior, which appear when the heart goes 

from normal rhythm to a tachycardia and then break up as 

the heart transitions to fibrillation and the system bifurcates 

towards harmful chaos [77]. This spatial evolution model 

suggests a mechanistic difference between the harmful chaos 

and the beneficial chaos. One could speculate that bifurca-

tions in cardiac rhythm are harmful because these produce 

chaos in the conduction system. However, the chaotic  

variability of normal sinus rhythm is beneficial, because this 

represents an interplay between the conduction system and 

the heart muscle which confers efficiency and flexibility. 

How can chaotic behavior in the heart be permanently lost? 

An explanation is most likely to be found in the structural 

changes in the heart produced by pathology and by aging. 

The structural properties of the heart determine its ability to 

respond to stimulation; if the heart is less compliant due  

to remodeling, or there is a loss of cardiomyocytes, the  

mechanical function of the heart could be constrained and 

forced toward more periodic behavior. Chaos in the heart 

may not just arise in the conduction system. Metabolic  

pathways can bifurcate towards chaos, and metabolism is 

intricately related to function. Calcium handling is a key 

regulator of contractile force, and chaotic behavior within 

these pathways could beget chaotic behavior in the genera-

tion of contractile force. 

 Where does fractal complexity in the heart rate signal 

come from? To a certain extent, fractal complexity may  

reflect underlying chaos, and it is lost by a bifurcation away 

from chaos in either direction (towards order or random-

ness). However, some of the fractal complexity of the heart 

may have its own unique origins. If one considers the  

endogenous rhythms of the cardiomyocytes, a fractal  

structure may exist in the multioscillator system of the  

cardiac syncytium. If one considers the conduction system  

in the heart, there is a fractal structure to the His-Purkinje 

system, which could beget fractal organization of the heart 

rate signal. The relationship between fractal complexity and 

underlying chaos may not be as straightforward as the dis-

cussion in this review has so far assumed. This is clearly 

illustrated by the effects of the parasympathetic nervous sys-

tem, which increases chaos in the heart rate, but decreases 

fractal complexity. The major influence of the parasympa-

thetic nervous system is on the conduction system; the  

ventricles receive sparse parasympathetic innervation. It is 

possible that, by decreasing conduction through the heart,  

the parasympathetic nervous system releases some of  

the cardiomyocytes from the unifying influence of the  

His-Purkinje system and the dual oscillator system is more 

prone to chaotic behavior. At the same time, a decrease in 

the influence of the fractal His-Purkinje system produces a 

decrease in the fractal complexity of the signal. In this  

 

model, the conduction system is the origin of the fractal 
complexity, whereas the interplay between the conduction 
system and the heart muscle is the origin of the chaotic  
behavior. The sympathetic nervous system innervates the 
entire heart and increases the rate and force of contraction; it 
can impose order on the conduction system and the heart 
muscle, and may therefore drive the dual oscillator towards 
more periodic behavior. If the heart becomes more periodic 
in its behavior, fractal complexity of the heart rate will  
also decrease. This may explain why denervation of the  
heart increases fractal complexity; it would be the loss of  
the sympathetic drive which allows fractal complexity to 
increase. 

CELLULAR DYNAMICS 

 The example of cardiovascular chaos illustrates that  
chaotic behavior at the level of the system is conferred  
by behavior at the cellular level. It is therefore important to 
consider the cellular level in more detail if the mechanistic 
bases of chaos and fractal complexity are to be understood. 
The central dogma of molecular biology implies the exis-
tence of a hierarchy within the cell in which each organiza-
tional level is given a particular task: DNA stores informa-
tion, RNA processes information, proteins execute the pro-
grams and metabolites fuel and fine tune the programs. 
However, the true distribution of cellular functions within 
the cell is more complex than this. The proteome is the re-
pository of short term information storage, the metabolome 
is an important controller of gene expression and RNA  
can execute cellular programs by influencing gene expres-
sion or regulating the subcellular targeting of the proteome 
[94-98]. It is therefore clear that, instead of being distinct 
levels in a linear chain, the genome, transcriptome, proteome 
and metabolome fulfil their functions by forming complex 
networks. Surprisingly, gene, protein and metabolic  
networks are all organized according to the same principles 
and form a type of network which is referred to as ‘scale-
free’ [99]. In a scale free network, the number of intercon-
nections formed by a node, referred to as its degree, obeys a 
power-law distribution i.e. there are groups of nodes which 
form large numbers of interactions, and others which form 
only a few; power law functions are characteristic of fractals, 
and the cellular networks can sometimes assume a fractal 
structure. Oltvai and Barabasi described this new paradigm 
in terms of a complexity pyramid in which the uniqueness 
conferred at the level of individual cellular components is 
integrated using common organizing principles [98]; this is 
summarized in Fig. (3).  

 Metabolic pathways represent an archetypal network in 
which to consider network dynamics. The topology of the 
metabolic network (substrate supply, energy production in 
the mitochondria, energy utilization) is scale-free. Within the 
network, evidence is emerging of compartmentalization. 
ATP generated by glycolysis is used to fuel membrane-
bound transporters and ion channels in the sarcolemma  
and sarcoplasmic reticulum, whereas ATP generated by  
mitochondrial oxidative phosphorylation is targeted to  
cytoplasmic processes such as the generation of contractile 
force (see [100] for review). Chaotic behavior has been  
frequently related to the interaction that occurs between  
oscillators, and metabolic pathways are replete with them.  
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There are ultradian rhythms in oxygen consumption. Within 
the metabolic machinery, there are more irregular oscillators. 
A well-studied example is the matrix membrane potential, 
whose energy is harnessed to generate ATP. The matrix  
membrane potential undergoes asynchronous oscillations 
which are triggered by reactive oxygen species (ROS) in  
a feed-forward cycle of ROS-induced ROS release. The  
function of these oscillations is unclear, but they may repre-
sent a mechanism for clearing ROS. Weiss et al. proposed 
that if these fluctuations are asynchronous, the induction  
of oscillations could be used to ‘neutralize’ unneeded  
mitochondria at times of low energy demand. However, if 
the fluctuations become synchronous, all the mitochondria 
would synthesize and consume ATP according to a cyclic 
pattern in unison, and energy supply would be uncoupled 
from energy demand [100]. The switch towards synchronous 
fluctuations in membrane potential represents a loss of  
complexity in the system, a harmful bifurcation toward  
periodic behavior. Another well-studied metabolic pathway 
is glycolysis. Glycolytic flux can be constant or periodic 
when glucose is provided at a single constant level. When 
the input of glucose is periodic, glycolytic flux can be either 
periodic or chaotic depending on the amplitude and  
frequency of the glucose input [101, 102]. It is likely that 
most biochemical pathways can exist in a number of oscilla-
tory states and can bifurcate from periodic to chaotic behav-
ior. The study of such phenomena in biochemical pathways 
is limited by technology: it is not easy to track and record 
metabolites in real time as can be done with, for example, 
calcium.  

 The next level of organization to consider is communica-

tion between cells. Such communication can arise through 

the exchange or autocrine or paracrine factors, or occur 

through direct contact. Ultradian rhythms display fractal 

properties, and the oscillators present within cell populations 

have the intriguing ability to self-synchronize (see [103] for 

review). In the model of cell synchronization proposed  

by Brodsky, the coordinated signal to synchronize protein 

synthesis oscillations is a loss of gangliosides throughout the 

cell population. The resulting increase in intracellular  

calcium activates protein kinases which modulate the periods 

their target oscillators and produce a synchronous rhythm in 

the entire population [103]. However, the fractal structure of 

the multi-oscillator system is preserved. Cell-cell communi-

cation is of importance when considering phenomena such as 

the conducted vasomotor response which, as discussed 

above, can exhibit both periodic and chaotic behavior. 

THE EVOLUTIONARY ORIGINS OF CELLULAR 
DYNAMICS 

 The evolutionary origins of the cellular dynamics  

described above can be understood using the concept of  
self organization. Self organization is a phenomenon first  

described by Alan Turing, in which repeated cycles of repul-

sion and attraction between units increase the internal  
complexity of a system, creating new levels of complexity 

without the direction of an external force or program [104]. 

Self-organization as a mechanism of evolution can be under-
stood as follows. The initial behavior of the system is ran-

dom; there are no meaningful interactions. However, because 

of their own properties, the components of the system will 
gradually start to interact with some of their neighbours and 

repel others. As the interactions become stronger, the system 

can bifurcate to become chaotic and then finally bifurcate 
again to become orderly. This process is exemplified by the 

spontaneity with which fish come together to form shoals or 

birds come together to form flocks. At the moment of self-
organization, the dynamics of the system may bifurcate to 

create a new more complex behavior. In order for the new 

network to stabilize, the interactions of its components need 
to be strong so that repeated cycles of feedback can reinforce 

the new structure. However, if the interactions are too strong, 

the network will become rigid and lose its ability to adapt. 
When the principle of self-organization is applied to evolu-

tion, it is seen that self-organization can generate complex 

systems which are then moulded by natural selection  
until they exist at the boundary between order and chaos. 

The fully evolved system exists at the very edge of stability, 

 

 

 

 

 

 

 

 

 

Fig. (3). Increasing complexity in biological systems. Unique characteristics are conveyed by the individual components, which are then 

organized by universal principles. The components form pathways, then scale-free networks containing functional modules, then hierarchical 

networks. Emergent properties are seen with each increasing level of complexity (modified from [98]). 
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and an intricate system of feedback, developed by evolution, 

keeps it there. When the system is pushed into chaotic  

behavior, the system quickly reverts back to order; this en-
ables the system to maintain its flexibility without losing its 

structure [105, 106].  

 Little is known about how the first cellular networks 
evolved, but the principle of self-organization suggests  
a possible mechanism. Network dynamics in biological  
systems can be understood, at least in part, in terms of wave 
propagation through an excitable medium. It has been known 
for more than half a century that chemical reactions can 
spread in an oscillating manner akin to wave propagation. 
According to a theory first developed by Alan Turing,  
oscillations and chemical waves can self organize into a  
cellular network [104]. In this case, a chemical (e.g. a 
morphogen or second messenger) is synthesized rapidly at a 
particular location but diffuses slowly. At the moment of 
synthesis, a localized peak concentration is achieved. The 
chemical then diffuses into the surrounding medium and the 
concentration at the site of synthesis begins to fall. However, 
the next burst of synthesis gives rise to a second peak, and 
the process repeats itself. 

 Repeated intermittent ‘bursts’ of chemical synthesis  
result in a chemical oscillator which gives out chemical  
diffusion waves. Chemical oscillators can exhibit constant, 
periodic and chaotic behavior, behaving as a chaotic system 
with bifurcations [107]. The chemical diffuses out to interact 
with neighbouring processes and targets, and can elicit  
responses not only by its unique identity, but by its behavior 
in time. In addition, the site at which the chemical is synthe-
sized enables site-specific responses to be elicited, which  
can lead to spatial organization of signaling, or contribute to 
the formation of architecture. As similar processes occur in 
parallel, the collective behavior of the system can suddenly 
bifurcate to produce a more complex behavior, and a  
functional module will have formed. Additional cytoplasmic 
structures can refine the function of the module. Aon et al. 
recently proposed a model based on the phenomenon of  
percolation, in which the cytoskeleton controls the paths that 
effector molecules take through the cell [108]; their model 
implies that the chemical diffusion waves can be directed 
and distributed, or blocked by the cytoskeleton. An example 
of the effects of cytoskeletal organization on a network is 
provided by the study of Aon and Cortassa, who found that 
increasing the extent of microtubular protein polymerization 
increased glycolytic flux in yeast [109].  

 Self-organization can create complexity independently, 
and provides an explanation of how function can gradually 
emerge from a sea of random behavior. However, if this  
is applied to evolution there is a major problem: how is  
the complexity passed on? Self-organisation, by definition, 
occurs without genetic influence, yet, in order for the  
complexity to survive in the species and be moulded by  
evolution, there must be traits to the new complexity which 
are heritable. It is unclear how complexity generated by self-
organization can be propagated to an entire species, but 
knowledge of evolutionary processes permits some specula-
tions. One would expect that the first time a new complex 
behavior appears, it will probably be lost. However, if a  
particular genetic background favors the generation of  
 

complex behaviors which improve survival, the favorable 
traits will be passed on and allow for the continued appear-
ance of beneficial complex behaviors which will eventually 
survive in the species. The genome may gradually evolve to 
encode more of the behavior, essentially ‘recording’ it and 
leaving less to self-organization. The first step to testing this 
idea is to quantify genetic influences on traits believed to 
have arisen by self-organisation.  

 No studies have attempted to quantify genetic influences 
on chaotic dynamics as our technological and mathematical 
tools are not yet up to this challenge. However, structural 
traits can be more easily studied. Fractal structures are  
believed to form largely by self-organisation with limited 
genetic input. Recent studies have attempted to quantify  
genetic influence on fractal structure, but the data are  
conflicting. Glenny and coworkers recently quantified the 
genetic influence on flow distribution in the monozygotic 
offspring of armadillos, and concluded that 2/3 of fractal 
vascular geometry was determined by genetic influences 
[110]. The structure of the fractal retinal vasculature has 
been studied in monozygotic and dizygotic twins, and  
the genetic influence in this case was small – only vessel 
tortuosity was found to be genetically determined [111]. 
These initial studies do not allow any definitive conclusions 
to be drawn. However, there is probably a balance and a  
division of labor between the ability of a biological system  
to self-organize, and the imposition of instructions from  
the genome. This is an important and virtually untouched 
area of research. 

THE INFLUENCE OF DYNAMICS ON FUNCTION 

 The choice of dynamics has important consequences  
for the function of physiological systems. The biochemical 
machinery of the cell has evolved to function under clearly 
defined conditions of pH, temperature, osmolarity, and at 
well defined levels of a host of electrolytes, nutrients and 
proteins. This is why the maintenance of equilibrium is  
important: the basic machinery which drives all functions is 
vulnerable to changes in these conditions. Periodic behavior 
is seen in the ultradian and circadian rhythms of the body. 
These evolved from the need to develop a sleep-wake cycle 
that is synchronised with the cycles of light and dark experi-
enced on the earth’s surface. The clocks which drive  
circadian rhythms must maintain periodic behavior or they 
will lose their ability to keep time. Periodic behavior is also 
seen in the sine wave behavior of vasomotion; if this is lost, 
the movement of blood becomes less efficient. Quasi-
periodic behavior is the most complicated behavior of linear 
dynamics and it defines the limits of order. It is seen in 
multi-oscillator systems such as the cardiac pacemaker. 
Many of these systems evolved to exist at the border  
between order and chaos and their function requires them to 
take advantage of both as the need arises. Chaotic behavior 
confers flexibility and efficiency on the system; it is usually 
beneficial, unless periodic behavior is integral to the function 
of the system as it is in the vasomotor response. Random 
behavior represents a complete breakdown of the system – 
fatal arrhythmias represent such a breakdown. Random  
behavior is also the initial behavior of unrelated components 
from which cellular networks first emerged. This paradigm 
is summarized in Fig. (4). 
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 Fractal complexity in time is likely to be due, at least in 
part, to underlying chaotic behavior. Chaos gives the system 
the ability to generate and store information. Fractal  
complexity in time, such as that seen in the heart rhythm, is 
one example of this; it allows the system to repeat behaviors 
it has previously used. However, the system does not need to 
remember the behavior. Instead of developing a separate 
repository into which the information is saved, evolution  
has made the intriguing choice of using a basic law of 
mathematics to achieve the effect of memory. The loss of 
chaotic behavior in either direction (towards order or random 
behavior) leads to a loss of fractal complexity and a loss of 
this memory effect. 

LIMITATIONS OF CHAOS THEORY AND FRACTAL 
MATHEMATICS 

 The use of fractal mathematics and chaos theory presents 

significant difficulties both at the level of the theory and at 

the level of application. At the present time, the properties of 

fractals are incompletely described, and further work is 

needed to discover new mathematical descriptors which can 

be applied to fractal analysis. However, the major drawback 

of fractal analysis is the lack of statistical tools which can 

determine whether differences in the properties of fractal 

objects or processes are significant. Because fractals have 

such bizarre statistical properties, this may require the devel-

opment of a fundamentally new kind of statistics. Until these 

tools are developed, we are limited to asking if a structure or 

process has a fractal structure, and to what extent, which 

does not do justice to the true potential of the fractal concept. 

It also does not permit detailed mechanistic studies to  

determine the origin of fractal structure. 

 Chaos theory in its current form is also limited. At  

its present stage of development, it can be used to ask if  

experimental data were generated by a random or determi-

nistic process, but it is a difficult and frustrating analytical 

approach to use. It is not clear how much data are required  

in order to construct the phase space set and determine  

its fractal dimension; the amounts of data are likely to be 

extremely large, and biological systems may not remain in a 

single state long enough to gather the required amounts of  
 

data. A low dimensional attractor is used as evidence of a 

deterministic system, but should be interpreted with caution; 

it is possible to produce a low dimensional attractor by  

constraining the choices available to a random process. A 

low dimensional attractor therefore does not definitively 

establish that a process is deterministic. There are also  

problems with artifacts introduced because of the sampling 

interval used to collect the data or inappropriate assumptions 

in the actual equations used to transform the raw data.  

Finally, there is also the problem of statistical hypothesis 

testing. Bifurcations are easy to detect and do not require 

statistical analysis. However, to detect more subtle changes 
in the attractor, a new statistical approach will be required. 

CONCLUSION 

 To obtain an integrated understanding of physiology, we 

require an understanding of the complex dynamics of 

physiological systems. The full promise and potential of 

fractal mathematics and chaos theory remain to be realized, 

and await further development of the theories. Nevertheless, 

these concepts have already provided revolutionary insights 

into the nature of living things. A new frontier has been 

opened.  

FURTHER READING 

 “Fractals and Chaos Simplified for the Life Sciences” 

[112] is a very accessible and visual text which provides a 

solid introduction to the mathematics and its applications to 

biology. “Fractal Physiology” [4] and “Fractal Geometry of 

Biological Systems” [8] provide more detailed reviews with-

out assuming a strong mathematical background. “Fractals 

Everywhere” is a more thorough text for those who wish to 

study the mathematics in greater detail [11]. The ground-

breaking work of Mandelbrot is worth reading, not least  

for the eloquence and beauty with which the concepts are 

presented and discussed [10].  
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Fig. (4). An overview of the relationship between dynamics and physiological function. 
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