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Abstract: Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to 

allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with 

myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape.  

Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of 

proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image 

stacks and sequential real-time image recordings of calcium transients of cells were made. 

All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus 

was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus 

assumes a ‘dormant’ or different role and that cardiomyocytes might be mitotically active even in late development, or 

specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle.  

Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valu-

able insights into developmental and death pathways of binucleate cardiomyocytes (word count 183). 

INTRODUCTION 

 Discussions as to stem cells being the ‘global cure’ for 
many diseases continue at a fast pace [1]. However, few 
positive results with therapeutic promise have been seen, 
such as in the treatment of Parkinson’s disease and cardiac 
fibrosis (heart attack) [2, 3]. To overcome many ethical con-
cerns in this field of research using fetal stem cells, a great 
deal of time and effort has been spent recognizing other 
sources of pluripotential cells, such as cord cells and bone 
marrow [4]. Further, undifferentiated adult cells have been 
suggested as promising targets for manipulation and tis-
sue/organ repair [4, 5].  

 It was intriguing therefore when research reports ap-
peared stating that the heart, considered the ultimate post-
mitotic organ, actually had the potential for regeneration [6, 
7]. Based on our observations with binucleate cardiomyo-
cytes, and our hypothesis that one nucleus might be involved 
in functions such as protein syntheses and ion fluxes, while 
the other is involved in cell development pathways, we car-
ried out this study. 

 Both isolated adult cardiomyocytes and cultured neonatal 
cardiomyocytes were predominantly binucleate, while we  
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have also reported the ‘regression’ of cultured adult cells to a 
neonatal form [8]. Therefore, initial experiments attempted 
to manipulate differentiation of our cultured cardiomyocytes, 
via additions of various factors, such as angiotensin, and co-
culturing on different matrices. We hoped that the ‘dormant’ 
nucleus would begin functioning in some manner and initiate 
binucleate myocyte regeneration, our aim being to provide 
the possibility of an ‘instant fix’ for fibrotic hearts.  

 We compared the localization(s) of a number of diverse 
proteins important in the modulation of intracellular calcium 
levels in neonatal, adult and cultured (dedifferentiated) adult 
cardiomyocytes. At the same time we identified markers of 
cardiomyocyte maturation such as adrenoreceptor numbers 
and subcellular organelle development [9]. Comparisons of 
calcium transients in myocyte groups using real-time fluo-
rescent imaging were made, to determine if there was a 
‘dominant-dormant nuclei pair’ with potential induction of 
the second nucleus into the contraction-relaxation cycle [10]. 
We began with angiotensin treatments, co-culturing with 
cardiac fibroblasts and using a complex culture matrix. 
However, these studies did not produce any additional, re-
vealing observations compared to our normal laminin-based 
cultures, so our early experimental manipulations are only 
presented in the discussion. 

 For many years it has been known that cardiomyocytes 
exhibit a binucleate morphology [11]. The percentage of 
ploidy is considerable in isolated neonatal mouse myocytes 
at what is considered a transitionary stage, a stage able to be 
influenced by multiple factors such as catecholamines, hy-
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poxia and angiotensin II [12-14]. Our cardiomyocyte cul-
tures have many binucleate cells and a number of theories 
have developed as to the reason for this second nucleus, such 
as does it indicate a cardiac pathology, or maybe impending 
apoptotic cell death? This binucleate form is believed to sig-
nal that terminal differentiation has been reached, a “tetra-
ploidy checkpoint”, thereby affording protection against cell 
overgrowth and excess proliferation [15, 16]. However, our 
research of nuclear calcium signaling gives this second nu-
cleus a potential further role and possibly an important part 
in cell growth pathways [17]. 

METHODS 

Cardiomyocyte Isolations  

 Cardiomyocytes were cultured as previously described 
[8, 18]. No additions were made to any of the cultures, other 
than medium, to induce growth.  

Neonatal Cardiomyocytes  

 Neonatal cardiac myocytes were isolated as previously 
reported [8, 18], sacrificing 2–3 day-old male rats (Harlan 
Sprague–Dawley, Harlan Co., IN, USA). The hearts were 
removed and harvested ventricles were digested with colla-
genase/pancreatin, separated on a Percoll (Pharmacia, Pis-
cataway, NJ, USA) gradient and cultured on laminin coated 
cover slips in 35 mm petri dishes. Culture medium was Dul-
becco's Modified Eagles Medium (DMEM; Gibco, Grand 
Island, NY, USA) containing 5000 U/l streptomycin and 
5000 U/l penicillin plus 10% (v/v) HyClone calf serum 
(Logan, UT, USA). Myocytes began beating spontaneously 
after 3–4 days at 37 °C in 90/10; air/carbon dioxide. Experi-
ments were performed on days 4 and/or 5. 

Isolation and Culturing of Adult Rat Cardiomyocytes  

 Adult male rat (Harlan Sprague–Dawley; 200 g) cardio-
myocytes were harvested as previously described [8, 18]. 
Anesthetized rats received 3000 IU of heparin by i.v. injec-
tion and the heart was exposed by a longitudinal thora-
cotomy incision. The thymus and fascia were cleared from 
the aorta with a sterile swab, the aorta was cross-clamped 
and cut distally, and the heart was removed and placed in 
50 ml of ice-cold Joklik media [1 package of Joklik media 
powder (Gibco, NY, USA), suspended in 1 l water, supple-
mented with 3.91 g taurine, 2.0 g NaHCO3, 0.391 g l-
glutamine and 0.282 g adenosine]. The aorta was cannulated 
and flushed with cold Joklik media, perfused at 12–
15 ml/min for 5 minutes, then transferred to a Langendorff 
apparatus, where it was flushed with warm Joklik media, and 
digested by perfusion with Joklik media containing 0.1% 
collagenase and 0.1% trypsin for 45 minutes. Ventricles 
were minced, placed in digestion buffer containing 0.1% 
collagenase (in Joklik media, then incubated in a shaking 
water bath (37 °C for 30 min) and centrifuged (3 min, at 50 x 
g). Pellets were washed twice in 4% bovine serum albumin 
(BSA) and once in 2% BSA solution, then suspended in 
20 ml Joklik media (pH 7.2, containing 2% BSA). Calcium 
chloride solution was slowly added to a final concentration 
of 1.25 mM. Cells were pelleted at 50 x g and suspended in 
4 ml of warm, serum-free DMEM medium by gentle pipet-
ting. Adult cells begin to contract spontaneously upon addi-
tion of medium [8, 18]. 

Dedifferentiation of Adult Cardiomyocytes 

 The cell suspension obtained above (1–2 drops) was lay-
ered onto sterile laminin coated cover slips and incubated for 
30 minutes (37 °C in 5% CO2/95% O2) to allow cell attach-
ment. Plating media [DMEM containing 10% fetal bovine 
serum, 3 (g/ml Ara-C (to inhibit fibroblast growth), 10 (g/ml 
insulin, and 5 U/ml each of penicillin and streptomycin] was 
gently added. Cells were fed fresh plating media every other 
day and began beating after 5–7 days of incubation. Experi-
ments were carried out between days 7–14. Dedifferentiation 
is determined by monitoring myocyte hypertrophy and ex-
pression of adhesion proteins as previously described [8, 18], 
as the cells assume a stellate, neonatal-like shape by day 10. 
Myofibrillar (re)alignment occurs between days 10-14.  

Imaging  

 Fluorescently probed cells were scanned with a Fluores-
cence Deconvolution Microscope (Applied Precision, 
Issaquah, WA, USA). Image analysis was carried out with 
SoftWoRxTM software (Applied Precision), with data sets 
subjected to a minimum of five deconvolution iterations and 
image stacking. Sequential real-time image recordings of 
contractile events were made on a Wallac/Perkin Elmer 
(Gaithersburg, MD, USA) Concord fluorescence spectropho-
tometer (Melville, NY, USA; 3) to show a number of con-
traction-relaxation cycles (minimum of 3–5), and video re-
cordings of these events were made [18]. Fluorescence (pixel 
densities) was measured using both Corel Paint 10 (Ottawak, 
Ontario, Canada) and Sigma Scan Pro 5.0 (SPSS, Chicago, 
IL, USA) software. 

 All animal usage procedures were approved by the 
UTHSC Animal Welfare Committee (Protocols HSC-AWC-
05-143 and 144), following NIH guidelines. 

RESULTS 

 Fig. (1) shows images of binucleate cardiomyocytes from 

each of the three isolates studied; neonatal stage (top), adult 

(middle) and cultured-dedifferentiated adult (bottom). Im-

ages were acquired by deconvolution fluorescence micros-

copy at a magnification of x600. Note that when adult cells 

are cultured, they increase in size (hypertrophy), demonstrate 

fiber randomization and assume a state between neonatal 

(stellate) and adult (rods) cardiomyocytes. The blue stain 

identifies nuclei (DAPI; two nuclei in each of the cells), the 

green is cardiac actin (tagged Phallocidin probe). The red 

stain identifies adrenoreceptors (Texas Red) that are visual-

ized to track maturation of the cells, as previously mentioned 

in the Methods section. 

 To recognize the localizations of various proteins as 

myocyte development occurs, Fig. (2) shows the IP3 recep-

tors in a dedifferentiated cardiomyocyte, with the yellow 

protein tightly clustered around one of the two nuclei. How-

ever, in the right panel, the adult cardiomyocyte shows the 

Na
+
+K

+
ATPase pump protein (yellow) distributed across the 

cell surface with no clustering to a particular nucleus. Once 

again, binucleate cells are shown, proteins are yellow, nuclei 

are blue and cardiac actin is green in the left panel and red in 

the right panel, a necessary change due to the wavelength of 

the fluorescent tags being used. 
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Fig. (1). Images of binucleate cardiomyocytes from the three iso-

lates studied, acquired by deconvolution fluorescence microscopy 

as described (magnification of x600). The blue stain identifies nu-

clei (DAPI; two nuclei in each of the cells), the green is cardiac 

actin (Phallocidin) and the red are the protein, in these particular 

images, the alpha adrenoceptor. A=Neonate; B=Adult; C=Cultured 

(dedifferentiating) Adult (Mag. X 600). 

 Fig. (3) shows a number of probes for various proteins in 
binucleate cells and again demonstrates protein clustering 

about one nucleus. Panel A shows a freshly isolated adult 
cardiomyocyte in which one (upper) blue nucleus sits on its 
own with no associated calcitonin gene related protein 
(CGRP-red). Panel B is a dedifferentiating myocyte with 
NF B65 clustered around the upper nucleus, and even dem-
onstrates the contractile protein actin being predominantly 
associated with the same nucleus. Panel C shows NF B50 
(NF-kappa B50) localized to the upper nucleus and Panel D 
is a dedifferentiating cell with a probe for alpha-adren- 
oreceptors shown clustered only around the upper nucleus, 
possibly demonstrating rearrangement of the cellular com-
ponents and contractile proteins during differentiation, or 
changes in protein syntheses.  

 We considered that if binucleation was as common in 
cardiomyocytes in the heart, as was seen in the cultured 
cells, then the reported myocyte regression in cardiac dys-
function, coupled with our observations here, might direct 
our attention to the presence of complementary pathways in 
cardiac repair and recovery. Fig. (4) is a model of multiple, 
stacked sections from a core sample of human myocardium 
before ventricular unloading with an assist device [19, 20]. 
Note the clustering of adrenoceptor protein around only one 
nucleus (single white arrow), and not the other (double ar-
row). 

 To further investigate the role(s) of the two nuclei, we 
employed real time fluorescent spectrophotometric imaging 
to see if calcium transients in neonatal and dedifferentiated 
cells emanated from one, or both, nuclei. Fig. (5) is a se-
quence of images from a cultured adult dedifferentiated cell. 
Note the two nuclei in frame 1 indicated by the arrows. In 
frame 3 the arrows point to ‘hot spots’ or ‘sparks’, with one 
of the two nuclei beginning to load with calcium. However, 
in frames 4 through 6, the other nucleus is the one that actu-
ally ‘fires’ to initiate contraction. Frames 7 through 9 are at 
the beginning of another cycle and once again show sparks 
(frame 8) and one nucleus firing (frame 9). This single-
nucleus activity is also seen in binucleate neonatal cardio-
myocytes. 

 However, as shown in Fig. (6), calcium transient initia-
tion in freshly isolated adult cells is from one end, with the 

 

 

 

 

 

 

 

 

Fig. (2). Shows the IP31 receptors in a dedifferentiated cardiomyocyte (left panel, yellow) tightly clustered around one of the two nuclei 

while in the adult cardiomyocyte (right panel) however, the yellow Na
+
+K

+
ATPase pump protein does not demonstrate clustering Nuclei are 

blue, proteins are yellow and cardiac actin is green in the left panel and red in the right panel, due to different wavelength tags being used. 

(Mag. Ax900; Bx300). 



4    The Open Cardiovascular Medicine Journal, 2009, Volume 3 Stephen et al. 

wave traveling the length of the myocyte before dissipating 
(frame 3) and restarting (frame 4). There is no involvement 
of the nuclei other than an accumulation of calcium as the 
wave passes through the cell. Further videos are available at 
http://www.uth.tmc.edu/pathology/research/corelab/vids.htm
l.  

DISCUSSION 

 Manipulation of in-situ adult cells would be a minimally 
invasive therapy, overcoming rejection associated problems. 
An understanding of differentiation in our cultured cardio-
myocytes using diverse manipulations such as cytokine 
treatments, co-culturing with fibroblasts, using different cul-

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Shows clustering of a number of probes for various proteins in binucleation. Panel A - freshly isolated adult cardiomyocytes and 

CGRP (red). Panel B - dedifferentiating myocyte with NF B65. Panel C is NF B50 in a dedifferentiating cell probed for alpha-adrenorecep- 

tors. (Mag. X 600). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Model generated from multiple, stacked sections of fluorescence deconvolution acquisitions of a core sample of human tissue show-

ing clustering of alpha-adrenoceptor protein around only one nucleus (single white arrow), and not with the other intramyocytic nucleus 

(double arrow). 
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ture matrices (simple v complex), exposure to angiotensin, 
etc, was hoped for and that the hypertrophic responses could 
be somehow controlled with a potential for utilization in 
tissue replacement. This was appealing and cardiomyocyte 
binucleation suggested the possibility that adult cardiomyo-
cytes may not be at a developmental end-point [21, 22] and 
would allow us some differentiation/maturation control. 
However, after finding that angiotensin induced fibroblasts 
secrete factors that stimulated myocyte growth (16.7±1% 
increase in angiotensin treated neonatal cardiomyocyte pro-
tein content, n=18, p<0.05), we subsequently found that 
these factors did not in fact condition myocytes to further 
responses to increased exogenous angiotensin [23]. Further-
more, a fibroblast-derived matrix (cardiogel) did support 
rapid maturation of cultured myocytes [24, 25], but changes 
in calcium signaling mechanisms in response to angiotensin 

treatments were entirely too inconsistent. Therefore, re-
sponses to angiotensin treatments was not a line of investiga-
tion that gave us much hope in proving our hypothesis that 
using cultured cells as an infusible repair of a cardiac infarct 
and subsequent fibrosis was a possibility, and it was not pur-
sued.  

 Our interest was again piqued regarding manipulation of 

myocyte growth following our observations that most of our 

isolated myocytes were binucleate at all three stages of de-

velopment (neonatal, adult, and differentiated; >95%). We 

further discovered that only one nucleus was the focus of 

calcium transients in most neonatal and dedifferentiated car-

diomyocytes and this observation, coupled with the observa-

tion that many of the proteins we routinely visualized were 

predominantly associated with only one nucleus, led us to 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Sequence of images from a cultured adult dedifferentiated cell using FLUO 4 as the calcium sensitive probe. Note the two nuclei 

indicated by the arrows in frame 1, the arrows show ‘hot spots’ or ‘sparks’ in frame 3. In frames 4 through 6, ‘firing’ of one of the nuclei can 

be seen. Frames 7 through 9 demonstrate the beginning of another cycle, with sparking in frame 8 and one nucleus firing in frame 9 and this 

is seen in binucleate neonatal cardiomyocytes as well. 

 

 

 

 

 

 

 

Fig. (6). Shows a sequence of images of freshly isolated adult cardiomyocyte, captured by real-time fluorescence spectrophotometry. The 

probe is FLUO 4. Highest concentrations of calcium are seen as bright white areas. Captures were made every 43 milliseconds. 
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hypothesize that during maturation (neonates) and reorgani-

zation (dedifferentiated) these specific protein localizations 

and particular protein syntheses, were integral parts of cellu-

lar maturation and development, involving only one of the 

two nuclei. We weren’t too surprised by these results in neo-

nates and dedifferentiating cells, but similar findings in ma-

ture, adult, rod-shaped cardiomyocytes directed our attention 

to the possibility of there being specific roles for each nu-

cleus in all stages of cardiomyocyte maturation. 

 Biochemical pathways associated with these findings are 
not reported here and further work in this area is underway. 
However, these are important and novel observations that 
lend support to earlier work reporting cardiomyocyte prolif-
eration in pathologic conditions, and mature cardiomyocytes 
having the potential for further mitosis [6]. One line of 
thought is that one nucleus is involved in myocyte matura-
tion (size), while the other is involved in specific mecha-
nisms that increase myocyte numbers as needed, even 
though increased cell numbers do not always result. This 
could explain the homogenous distribution of some (sar-
colemmal) proteins such as the Na

+
+K

+
- ATPase (sodium 

potassium adenosine triphosphatase; EC 3.6.3.9), while the 
intracellular calcium channel regulators stanniocalcin, and 
the IP2 and IP3 gated proteins, remain associated with a sin-
gle nucleus to modulate nuclear calcium fluxes [8].  

 This research has provided results supporting previous 
studies which indicate that binucleation occurs at a time 
when ionic changes are necessary to take the myocytes from 
a neonatal to adult stage and when adult proteins and hyper-
trophic pathways are needed and initiated. As this develop-
ment process requires the calmodulin dependent kinase and 
IP3 receptors, it is localized to the nucleus and involves lu-
minal calcium control via interconnections of the sarcoplas-
mic reticulum and nuclear envelope. These findings are 
therefore consistent with, and add evidence to, membranous 
excitation-transcription coupling as has previously reported 
[25-27].  

 We have demonstrated specificity of protein localization 

and protein synthesis to a single nucleus in isolated binucle-

ate cardiomyocytes; we have also revealed that proteins re-

quired to interact with the extracellular milieu, such as the 

Na
+
+K

+
-ATPase, do not exhibit this focused distribution. 

These observations pose the question of whether the ‘dor-

mant’ second nucleus could be ‘switched on’ by appropriate 

compounds and become involved in cell replication and 

myocardial regeneration. This question is especially relevant, 

as cardiomyocyte dedifferentiation and fetal phenotype ex-

pression does not reactivate the second nucleus. However, it 

has been shown, in dividing rat cardiomyocytes that expo-

sure to catecholamines can drive the cells to proliferate 

rather than enlarge and that adult rat cardiomyocytes do con-
tain the proliferating cell nuclear antigen [28]. 

 Our findings support those of Wu and colleagues [29], 
concluding (i) nuclear calcium is required for protein forma-
tion, (ii) cytoplasmic calcium is necessary for cell contrac-
tion and (iii) specific ionic requirements occur as the myo-
cytes mature and/or differentiate. We suggest that one nu-
cleus is predominantly involved in contractile function in 
non-mature, binucleate cardiomyocytes, while protein syn-
theses are also localized to a single (other) nucleus, and these 

specific roles are seen via one nucleus having continued in-
creased intra-nuclear calcium, while the other had fluctuating 
levels. A number of possibilities for cell proliferation initia-
tion come to mind, such as death of the ‘active’ nucleus in-
ducing the ‘dormant’, second nucleus to become active, or 
perhaps the ‘second’ nucleus is involved in apoptosis and not 
necrosis? Are the two nuclei signaling to each other? All 
these considerations require extensive investigation in case 
adult cardiomyocyte proliferation can and does occur and 
can be controlled.  

 Here we again mention that cultured-dedifferentiating 
adult cells revert to a neonatal-like dependence on nuclear 
calcium for contraction, and do return to fetal protein synthe-
sis, adaptations that have been suggested to occur in heart 
failure [30]. Perhaps this reversion is a re-initiation of proc-
esses to stop mitosis, thereby encouraging older cardiomyo-
cytes to continue replicating, thereby offering us a new 
treatment target. Whether cardiomyocytes have the potential 
to regenerate is a matter for intense research, while methods 
to goad the heart into a regenerative state, with without stem 
cell treatments, is of immense importance [31]. Binucleate 
cells function independently, and carry out diverse roles and 
signaling associated with a young stage of development [32], 
but human hearts do return to a fetal-like form in disease and 
stress, perhaps in a (futile?) effort to restart cell division, the 
regeneration process [30] and adaptation [7]. 

 Stem cells show promise in the treatment of cardiac dis-
ease, but our own tissue might have more of a say in cardiac 
repair than we at first believed. The heart certainly often 
recovers with ventricular unloading and perhaps it is not too 
far-fetched to envision ventricular unloading being coupled 
with targeted protein syntheses as a way to directing cardio-
myocytes to reacquire a fetal phenotype and to channel this 
change into a replenishment of functional, contracting, mus-
cle cells, overcoming areas of fibrosis, or as an adjunct to 
pharmacologic and mechanical unloading [33-38]. 
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