
70 The Open Cardiovascular Medicine Journal, 2008, 2, 70-78  

 

 1874-1924/08 2008 Bentham Open 

Open Access 

Oxidative Stress As A Common Mediator for Apoptosis Induced-Cardiac 
Damage in Diabetic Rats 

Mohammad M Dallak
1
, Dimitri P Mikhailidis

2,
*, Mohamed A Haidara

1
, Ismaeel M Bin-Jaliah

1
, 

Olaa M Tork
3
, Moshira A Rateb

3
, Hanaa Z Yassin

3
, Zeinb A Al-refaie

3
, Ibrahim M Ibrahim

3
,  

Samy M Elawa
4
, Laila A Rashed

5
 and Noha A Afifi

6
 

1
Physiology Department, College of Medicine, King Khalid University, Saudi Arabia, 

2
Department of Clinical Biochem-

istry (Vascular Prevention Clinic), Royal Free Hospital campus, University College of London, UK, 
3
Physiology 

Department, Faculty of Medicine, Cairo University, Egypt, 
4
College of Health and Sciences, Kuwait, 

5
Biochemistry 

Department, Faculty of Medicine, Cairo University, Egypt and 
6
Histology Department, Faculty of Medicine, Cairo 

University, Egypt 

Abstract: Aim: To investigate the possible role of oxidative stress as a common mediator of apoptosis and cardiac dam-

age in diabetes. 

Materials and Methods: This experimental work was conducted on 5 groups of Wistar rats. Group I was the control group. 

Diabetes type 1 was induced in other groups (by streptozotocin) and animals received insulin or vitamin E (300 mg /kg 

body weight), both insulin and vitamin E, or no treatment for 4 weeks according to their group. At the end of the study, 

serum and cardiac tissues were examined for biochemical parameters of cardiac function, oxidative stress and apoptosis. 

Electron microscopy pictures of cardiac tissue were also evaluated for signs of cardiac damage.  

Results: Markers of oxidative stress, apoptosis, inflammation as well as manifestations of cardiac damage as assessed by 

electron microscopy were significantly decreased in rats treated with both insulin and vitamin E when compared with un-

treated diabetic rats or rats treated with either insulin or vitamin E alone. 

Conclusion: Administration of both vitamin E and insulin was effective in reducing markers of oxidative stress and apop-

tosis and improving parameters of cardiac function in experiments animals. Antioxidants might prove beneficial as an ad-

juvant treatment in addition to insulin in type 1 diabetes associated with manifestations of cardiac complications. 
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INTRODUCTION  

Diabetes represents a serious risk factor for the develop-
ment of cardiovascular complications such as coronary heart 
disease, peripheral arterial disease, hypertension, stroke, car-
diomyopathy and nephropathy [1]. Identifying risk factors 
that may lead to diabetes type 2, such as metabolic syndrome 
(MetS) provides the base for life modification and/or phar-
macological intervention in order to prevent cardiovascular 
complications [2]. Among other factors, increased oxidative 
stress has been implicated as a possible mechanism for such 
complications [3]. 

In diabetes the circulating free radicals may contribute to 
progression of heart disease and possibly mediate the process 
of apoptosis [4], a state where increased oxidative stress is 
documented [5]. Recent reports provide evidence that high 
ambient glucose can promote apoptosis in vitro, suggesting 
potential cellular damage as a result of hyperglycemia in 
diabetes [6]. Though oxidative stress-induced apoptosis was 
postulated to occur in cases of myocardial infarction [7] it is  
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uncertain whether apoptosis occurs in cardiac muscle during 
the course of diabetes. Levrand et al. [8] postulated that Per-
oxynitrite (ONOO ) triggers apoptosis in cardiomyocytes in 
vitro and in the myocardium in vivo. ONOO  is a strong bio-
logical oxidant and nitrating species formed from the near-
diffusion-limited reaction of the free radicals nitric oxide and 
superoxide anion [9]. It has been documented that ONOO  
formation represents a major mechanism of myocardial in-
jury in various cardiac pathologies including myocardial 
infarction, chronic heart failure and cardiomyopathy associ-
ated with diabetes [10]. 

ONOO  may cause myocardial cytotoxicity through di-

rect oxidative damage to lipids, proteins and DNA [11], acti-

vation of metalloproteinases [12], and the nitration of tyro-

sine residues within proteins [13]. ONOO  acts as a potent 

signaling molecule in cardiomyocytes, activating all mem-

bers of the MAP kinase family [14], and inhibiting the acti-

vation of the transcription factor nuclear factor kappa B [15]. 

One major pathway of ONOO  dependent myocardial cyto-

toxicity relies on oxidative DNA damage and activation of 

the nuclear enzyme poly(ADP-ribose) polymerase (PARP), 

which consumes cellular nicotinamide dinucleotide (NAD) 

and adenosine triphosphate (ATP), leading to cell necrosis 

[16].  
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However, Levrand et al. [8] showed that ONOO  exerts 
potent proapoptotic effects in cardiomyocytes in vitro and in 
the myocardium in vivo, characterized by the activation of 
caspase-3 and the cleavage of PARP. The authors added that 
ONOO  may represent a major effector of cardiomyocyte 
apoptosis that may cause myocardial damage and dysfunc-
tion in several cardiac pathologies. 

On another level, antioxidant administration has been re-
ported to show beneficial effects on parameters of oxidative 
stress and cardiovascular functions in experimental diabetes 
[17]. 

Haidara et al. [18] showed that administration of antioxi-
dants, vitamin E or C, may potentially ameliorate endothelial 
dysfunction and reduce thrombotic tendency in rats with 
streptozotocin (STZ)-induced DM associated with hyperten-
sion.  

The aim of the present study was to assess the possible 
contribution of apoptosis as a mechanism for oxidative 
stress-induced injury in the myocardium in STZ-induced 
diabetic rats. We also evaluated the effects of administration 
of insulin and/or the antioxidant vitamin E on biochemical 
parameters of oxidative stress and apoptosis, as well as on 
the histological manifestations of damage in cardiac muscle.  

MATERIALS AND METHODS 

The experiments were conducted in the Faculty of Medi-
cine, Cairo University. 

Experimental Animals 

50 male albino rats, weighing 170-200 g were used. They 
were kept in the animal house of Kasr Al-Aini Faculty of 
Medicine, Cairo University. The rats had free access to stan-
dard rat chow and water. They were kept at 22 ± 1ºC tem-
perature at 12 h dark-light cycles. 

Rats were randomly divided into 5 groups (each, n=10). 
Control group (Group 1) received an intraperitoneal (i.p.) 
injection of 0.1 mol/L sodium citrate buffer (pH 4.5). All 
other groups (Groups II, III, IV and V) received a single i.p. 
injection of STZ, 65 mgKg

-1
 body weight [19], freshly dis-

solved in 0.1 M citrate buffer (pH 4.5). Diabetes mellitus 
was verified by measuring blood glucose levels (after over-
night fast) with the use of glucose oxidase reagent strips 
(Lif3 scan, Milpitas, CA, USA). Rats having blood glucose 
level  300 mg/ dL were considered diabetic [20].  

Group II diabetic rats received no treatment during the 

course of the study, while group III animals (Group III, INS) 

received 1 unit of insulin, injected subcutaneously (s.c.) 

every day for 4 weeks. Group IV (E300): diabetic group re-

ceiving vitamin E 300 mgKg
-1

 body weight intramuscularly 

(i.m.) 3 times per week for 4 weeks [21]. Group V (I+E300): 

Diabetic rats received insulin (1 U), s.c., daily, and vitamin E 
im 3 times a week for 4 weeks. 

The study period lasted for 4 weeks, a period which has 

been proved to induce detectable diabetic complications in 
kidneys, skeletal muscles, heart and retina [22]. 

At the end of 4 weeks, retro-orbital blood samples were 
obtained under anesthesia, using 40 mgKg

-1
 body weight 

sodium thiopentone i.p. after an overnight fast. Samples 
were allowed to clot for 20 min and then centrifuged at 

14000 rpm for 10 min for serum separation which was kept 
at -80 ºC until time of assay of cardiac enzymes. Samples 
from the left ventricles were removed and prepared for de-
tection of malondialdehyde (MDA), glutathione peroxidase 

(GPX), cyclic guanosine monophosphate (cGMP), gene ex-
pression of annexin V, induced nitric oxide synthase (iNOS) 
and electron microscopic studies of cardiac tissues. 

Chemicals  

STZ (Trade name Zanosar) was purchased from Sigma 
chemical company, St. Louis Missouri, USA, in the form of 
1 g vials. The drug was dissolved in 0.1 M sodium citrate 
(pH adjusted to 4.5). Insulin (Act rapid HM) was purchased 
from Nordisk Company, in the form of ampoules 100 IU /ml. 
Vitamin E was purchased from Pharco Pharmaceutical 
Company in the form of ampoules 250 mg dissolved in ara-
chis oil. 

Measurements 

Biochemical Parameters 

1-Detection of Annexin V and iNOS Gene Expression 

About 30 mg of each heart tissue was homogenized in 
RNA lysis buffer which contains mercaptoethanol then cen-
trifuged at 14000 rpm for 10 min. The supernatant was fro-
zen at -80 ºC until examined for gene expression of annexin 
V and iNOS by RT-PCR. 

RNA Extraction:  

 RNA was extracted from heart homogenate using SV-
total RNA isolation system kit (Promega, Madison, USA) 
according to manufacturer’s recommendation and the ex-
tracted RNA was measured spectrophotometrically at 280 
nm. 

Reverse Transcriptase and Polymerase Chain Reaction  
(RT-PCR):  

cDNA was prepared from RNA as follows: 

About 20 g of mRNA was heated at 70 ºC for 5 min 
with 50 pmol of reverse primer of selected gene (annexin V, 
iNOS) before adding 5 XRT buffer (50 mM Tris CL, pH8.3. 
10 mM dNTPS and 200 units of murine leukemia virus re-
verse transcriptase in a final volume up 36 L) .RT reaction 
was carried for 2 h at 37 ºC.  

Polymerase Chain Reaction (PCR) 

5 L of cDNA was subjected to PCR under the condi-
tions specified below; PCR reaction was carried by adding 
50 pmol of each of forward and reverse primer specific to 
each gene as detailed later. 

10 mM dNTPS, 2-5 unit TACL,PCR 10x buffer (contain-
ing 100 mM Tris HCL pH 8.3 , KCL 10 mM to final volume 
50 L):  

Primer Sequence Cycling Condition 

1-  Annexin V 

 Sense: 5- GTC TCC ACC CAC TTA 

 GTC TAA GTT-3- 

 Anti sense: 

 5-CCC TGC CAA TGA ACG CTG  

 CCA-3- 

94 ºC  1 min 

60 ºC  1 min 

72 ºC  1 min 

Extension 

72 ºC  1 min 
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2- iNOS 

 Sense: 5-GTG AGG ATG AAA ACA 

 TGG- 3- 

 Antisense 

 5-ACC TGC AGG 

 TTG GAC CA- 3- 

94 ºC  30 sec 

57 ºC  45 sec 

72 ºC  45 sec 

Extension 

72 ºC  8 min 

 

Agarose Gel Electrophoresis 

The amplified PCR product of selected gene were elec-
trophoresed on 1.5 % Agarose gel and were UV visualized 
after staining with ethidium bromide. UV illuminated gel 
were photographed. A densitometry system using a Standard 
DNA of known concentration gene Gel, documentation sys-
tem was used for analysis (Syngene, Cambridge, UK), Figs. 
(1 & 2).  

2) Measurement of MDA  

MDA was measured in cardiac tissue homogenate after 
precipitation of protein by the addition of trichloracetic acid 
(TCA) then thiobarbituric acid (TBA). TBA reacted with 
MDA to form thiobarbituric acid product which was meas-
ured at 532 nm according [23]. The level of peroxidation 
was expressed as the amount of MDA in nmol/mg protein. 

3) Glutathione Peroxidase (GPX)  

GPX was assessed in tissue homogenate using a method 
based on GSH oxidation by cymene hydroxyl catalyzed by 
GSH-Px activity (using Wak-Cheme, cat. No: Wak-FR-GPX 
80. Germany) according to the manufacturer’s instructions. 
Absorbance was measured at 340 nm [24].  

4) Cyclic Guanosine Monophosphate (cGMP) Assay 

Frozen samples stored in 0.1 normal HCL were grounded 
with a stainless steel mortar, then homogenized and centri-

fuged at 600g, at 4 ºC for 10 min. The supernatant was used 
for the cGMP assay by ELISA kit (R&D System, Min-
nepolis, MN, USA) according to manufacturer’s recommen-
dation [25]. 

5) Serum Cardiac Enzymes  

 Creatine kinase (CK) activity was determined using a kit 
provided by Randox [26].  

Ultrastructural Studies 

Specimens from the ventricles of all animals were proc-
essed according to the method of Jans and de-jong [27]. 
Semi-thin sections “1 m thickness” were cut by 2 KB ultra-
microtome and stained with 1 % toluidine blue for observa-
tion. Ultra-thin sections “60-100 nm” thickness were pre-
pared and stained with uranyl acetate and lead citrate to be 
examined under JOEL EM 1005 transmission electron mi-
croscope using an accelerated voltage of 60 KV.  

This research was funded and approved by the ethical 
committee of Kasr Al-Aini Faculty of Medicine, Cairo Uni-
versity. 

Statistical Analysis 

The results are presented as mean ± SD. Comparison 
were made using paired and unpaired t test one-way 
ANOVA as required. When a significant F was obtained, 
multiple comparison post tests were used to determine which 
groups were significantly different. P  0.05 was considered 
significant.  

RESULTS 

Table (1) shows the effects of diabetes on biochemical 
parameters of cardiac injury. There is significant increase of 
serum CK activity in the untreated diabetic group II (P < 
0.001) compared with controls. Treatment with either vita-
min E or insulin alone significantly decreased the activity of 

 

 

 

 

Fig. (1). An agarose gel electrophoresis showing products of annexin gene expression; Lane M: PCR marker; Lane 1: gene product in control 

group. Lane 2&3: gene product in diabetic group. Lane 4: gene product in diabetic group receive insulin. Lane 5: gene product in diabetic 

group receive vitamin E. Lane 6: gene product in diabetic group receive insulin and vit E. 

 

 

 

 

Fig. (2). An agarose gel electrophoresis showing product of iNOS gene expression. Lane M: PCR marker. Lane 1: gene product in control 

group. Lane 2, 3&4: gene product in diabetic group. Lane 5: gene product in diabetic group receive insulin. Lane 6: gene product in diabetic 

group receive vitamin E. Lane 7: gene product in diabetic group receive insulin and vit E. 
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this enzyme compared with the untreated diabetic group (P < 
0.05). Treatment with vitamin E and insulin decreased this 
enzyme back to control levels. 

Table (2) shows that MDA, an oxidative stress marker, 
was significantly elevated (P < 0.01) in the diabetic untreated 
group compared with controls. MDA significantly decreased 
in insulin treated rats when compared with the untreated 
group (P < 0.01). Treatment with vitamin E and or insulin 
decreased MDA significantly below levels in the untreated 
diabetic group and back to control levels. 

On the other hand, GPX, which assesses the antioxidant 
state in tissues, was significantly decreased in untreated dia-
betic groups compared with controls. Treatment with vitamin 
E and insulin increased GPX back to control levels. 

The antioxidant status in cardiac tissues is better indi-
cated by the ratio of GPX/MDA. This ratio was decreased in 

the diabetic untreated group and the group only receiving 
insulin. However, the ratio was increased to the control value 
in groups treated with either vitamin E alone or vitamin E 
with insulin. 

Table (3) shows that annexin V levels were significantly 

elevated (P < 0.001) in the untreated diabetic (group II) car-

diac tissues compared with the controls. However, levels 

were decreased significantly (P < 0.001) in diabetic rats re-

ceiving insulin (group III) when compared with untreated 

diabetic rats. Diabetic animals treated with both insulin and 

vitamin E showed significant decrease of annexin V in com-

parison with the untreated diabetic group (P < 0.01) and dia-

betic rats receiving only vitamin E (P < 0.01) . 

Table (4) shows the effects of diabetes on the expression 

of the pro-inflammatory parameters and iNOS. There was a 

significant increase in both iNOS and cGMP in cardiac tis-

Table 1. Creatine Kinase (CK) Activity (U /L Serum) in the Studied Groups 4 Weeks After Induction of Diabetes (n=10 in Each 

Group) 

Groups Control Diabetic INS E 300 I+E300 

CK 2.9 + 0.6 6.0 + 1.2* 3.4 + 0.8  2.8 + 0.9  1.9 + 0.8  

Results are mean ±SD; INS= Insulin, E=300: vitamin E 300 mg, I+E=300: insulin 1U sc +Vitamin E 300 mg. CK= Creatine kinase.  
*Significant with control (P < 0.001); Significant with DM (P < 0.01).  
 

Table 2. The Levels of Oxidative Markers MAD (nmol/mg Protein) and the Antioxidant GPX (μ unit/mg Tissue) in the Heart  

Tissues of Studied Groups and Their Ratio GPX/MDA 4 Weeks After Induction of Diabetes (n=10 in Each Group) 

Groups Control Diabetic INS E 300  I+E300 

MDA 0.1+ 0.0 0.3 +0.1* 0.2 + 0.1*  0.1 +0.0  0.1 + 0.0  

GPX 2.1 + 0.5 .1 + 0.0* 1.7 + 0.4  1.5 + 0.5  1.6 + 0.5  

GPX/MDA 19.6+ 6.7 0.3+ 0.1* 9.0+ 3.1*  15.0 + 7.1  15.6 + 3.2  

Results are mean ±SD; INS= Insulin, E=300: vitamin E 300mg, I+E=300: insulin 1U sc +Vitamin E 300 mg, MDA= malondialdehyde, GPX= glutathione peroxidase.  

*Significant with control (P < 0.01); Significant with DM (P < 0.01).  
 

Table 3. Annexin V Levels (μg /mg Protein) in the Heart Tissues of Studied Groups 4 Weeks After Induction of Diabetes (n=10 in 

Each Group) 

Groups Control Diabetic INS E 300 I+E300 

Annexin 403 + 97 1043 + 138* 564 + 108 * 657 + 138 * 424 + 66  

Results are expressed as mean ±SD; *Significant with control (P < 0.001); Significant with diabetic (P < 0.01).  

 

Table 4. The Levels of iNOS (μg /mg Protein) and cGMP (n mol /mg Protein) in the Heart Tissues of Studied Groups 4 Weeks  

After Induction of Diabetes (n=10 in Each Group) 

Groups Control Diabetic INS E 300 I+E300 

iNOS  169 + 29 451 + 106* 277 + 64*  356 + 78* 231 + 58  

cGMP  1.3 + 0.4 3.6+ 0.6*  2.6+ 0.5*  2.3+0.8*  1.4 + 0.4  

Results are mean ±SD. 
Ins= Insulin, E=300: vitamin E 300mg, I+E300: insulin 1U sc +Vitamin E 300 mg, iNOS: inducible nitric oxide synthase, cGMP= cyclic guanosine monophosphate.  
*Significant with control (P < 0.001); Significant with DM (P < 0.01). 



74    The Open Cardiovascular Medicine Journal, 2008, Volume 2 Dallak et al. 

sues of the untreated diabetic group (P < 0.001). Neither in-

sulin alone, nor vitamin E decreased them to control values; 

however; in the group treated with both insulin and vitamin 

E, values returned to control levels.  

Ultrastructural Electron Microscopic Examination  

Electron microscopic examination of ultra-thin sections 

of the left ventricular myocardium of the control group 

(group I) revealed normal histological structure of cardiac 

myocytes Fig. (3). Ventricular sections obtained from un-

treated rats (group II) showed myofibrillar lysis in the form 

marked degeneration, disruption and rarefaction of the myo-

fibrils (Figs. 4, 5). Nuclei of cardiac myocytes exhibited sev-

eral degenerative changes where some nuclei showed pe-

ripherally condensed marginated chromatin (Fig. 6). In addi-

tion several cardiac myocytes exhibited marked cytoplasmic 

vacuolations (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of control rats showing that the nucleus of a cardiac 

myocyte (n) appears oval with extended euchromatin. Z lines (Z) 

are easily demarcated. Rows of mitochondria (m) are abundant 

between the myofibrils. A blood capillary (C) is seen (Original 

mag. X 3100). 

The ultrastructure of ventricular sections obtained from 

group III (diabetic rats which received insulin) revealed rare-

faction of myofibrils with wide dispersion of mitochondria. 

Nuclei exhibited condensation of nuclear chromatin (Fig. 8). 

The diabetic group which received vitamin E 300 mg 

showed that most of the myofibrils formed regular striations 

with clear Z-lines yet striations appeared interrupted in some 

sites. Mitochondria with dense matrix substance were pre-

sent between the myofibrils. Sarcolemma appeared markedly 

irregular (Fig. 9).  

The ultrastructure of ventricular ultrathin sections of the 

diabetic group which received both insulin and vitamin E 

300 mg showed more regular striations of myofibrils with 

clear Z-lines. Sarcomeres could be easily detected. Rows of 

mitochondria appeared longitudinally arranged between the 

myofibrils (Fig. 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of group II (diabetic rats) showing that mitochondria 

with dense matrix (m) appear irregularly dispersed. Myofibrils ap-

pear widely separated with rarefied cytoplasm of cardiac myocyte 

(r). Note widening of the intercellular space (W). A blood capillary 

(C) in the intercellular space shows an endothelial cell (E) in its 

wall and RBCs in its lumen (R). (Original mag. X 5000). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of group II (diabetic rats) showing one rarefied cardiac 

myocyte (R) with marked myofibrillar lysis. Another myocyte 

shows rarefied myofibrils (arrows) and mitochondria with dense 

matrix (m) (Original mag. X 3000). 
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Fig. (6). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of group II (diabetic rats) showing margination of the 

nuclear chromatin of a nucleus of a cardiac myocyte (arrows). Myo-

fibrils appear completely rarefied (r). Most mitochondria show 

dense matrix (m) while others show disrupted cristea (arrowhead) 

(Original mag. X 4000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of group II (diabetic rats) showing that the nucleus of a 

cardiac myocyte (N) has irregular nuclear outline (arrows) with 

margination of its chromatin. Cardiac myocytes are rarefied with 

abundant vacuoles (V) and dispersed mitochondria with dense ma-

trix (m) (Original mag. X 3000). 

DISCUSSION 

Patients with diabetes type 1 or 2, have a 2-8 fold in-
creased risk of developing cardiovascular diseases such as 
myocardial infarction, congestive heart failure, cerebrovas-
cular and peripheral arterial diseases [28]. There is growing 
evidence that oxidative stress associated with diabetes melli-

tus may promote endothelial dysfunction, hypertension [29], 
thromboembolism and cardiomyopathy [30]. In both clinical 
and experimental models of diabetes, reactive oxygen spe-
cies (ROS)-induced oxidation is considered to be a key fac-
tor in causing cardiac injury [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of group III (diabetic rats receiving insulin) showing 

margination of nuclear chromatin of a cardiac myocyte (arrows). 

Myofibrils are rarefied (r). Mitochondria (m) are irregularly dis-

persed (Original mag. X 3000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Electron micrograph of an ultrathin section in the ventricu-

lar muscle of group IV (diabetic rats receiving vitamin E) showing 

that most of the myofibrils appear to be forming regular striations 

yet some of them appear interrupted in certain areas (arrows). Most 

myofibrils show clear Z lines (Z). Mitochondria (m) with dense 

matrix are detected between the myofibrils. Sarcolemma appears 

irregular (short arrows). A blood capillary (C) is seen (Original 

mag. X 3000). 
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Fig. (10). Electron micrograph of an ultrathin section in the ven-

tricular muscle of group V (diabetic rats receiving insulin and vita-

min E) showing more regular striations of myofibrils with clear Z 

lines (Z). Rows of mitochondria (m) are longitudinally arranged 

between the myofibrils. A fibroblast (F) can be observed in the 

intercellular space between the cardiac myocytes (Original mag. X 

5000). 

High glucose has been postulated to generate ROS and 

nitrogen species in numerous cell types. Generation of su-

peroxide by high glucose is well described and arises princi-
pally via the mitochondrial electron transport chain. [32]. 

Another source of glucose-induced oxidative stress is via the 

polyol pathway where glucose is reduced to sorbitol by al-
dose reductase in a process that consumes NADPH. This will 

impair the NADPH-dependent generation of glutathione, an 

essential cellular antioxidant [33]. 

Increased ROS generation increases the activity of nu-

clear factor kappa-B (NF-kB) in various cell types including 

endothelial [34], mesangial [35], and vascular smooth mus-

cle cells [36]. This process is dependent on protein kinase C 
(PKC) activation [37,38].  

Our study showed that diabetic cardiomyopathy may oc-

cur in untreated diabetic rats due to long standing hypergly-

cemia which was demonstrated by structural and functional 

changes such as increased CK activity and myocardial dam-

age assessed by electron microscopic studies. Assessment of 

oxidative stress revealed increased MDA content, decreased 
GPX and GPX/MDA ratio. 

Yoon et al. [39] postulated that H2O2 induces an increase 

in apoptosis signal regulating kinase-1 which cause down 

regulation of antiapoptotic Bcl-2, disruption of the mito-

chondrial membrane potential and activation of caspase cas-

cade [40]. High glucose also causes a 2 fold increase in Bax 

expression, which induced cytochrome C release which in 

turn stimulates apoptosis activating factor, caspase 9 and 
caspase 3 [41].  

There is evidence that the incidence of apoptosis in-
creases in heart of patients with diabetes [42] and STZ-
induced diabetic rats [43]. In this study, increased apoptosis 
in diabetic cardiac muscles was evident by the increased 
levels of annexin V in heart tissues of untreated diabetic rats. 
Annexin V can be used as an apoptotic marker in the heart 
[44]. Annexin is mainly located in cardiomyocytes. How-
ever, it could be relocated to interstitial tissues in ischemic 
and failing hearts or it could be externalized and exhibit a 
pro-apoptotic effect in cardiomyocytes [45]. There is a sig-
nificant increase of plasma annexin V concentration in pa-
tients with acute myocardial infarction which could reflect 
the severity of myocardial damage [46]. 

It was found that early apoptosis can be assessed and im-
aged with annexin V scintigraphy in rats [47,48], based on 
its ability to identify extracellular phosphatidyl-serine, which 
arises during apoptosis [49]. 

Annexin V was originally discovered as an antithrom-
botic activity in vivo and it links apoptosis to thrombosis and 
haemostasis [50]. It is now accepted that cell surface expo-
sure of phosphatidylserine (PS) is an integral part of the 
apoptotic process. Once committed to die the cell quickly 
exposes PS at its surface while maintaining the integrity of 
the plasma [51,52]. PS on the apoptotic cell is thought to 
serve primarily for the clearance of the dying cell [53]. An-
nexin V has a high affinity for these surfaces in the complex 
environment of the tissue and likely form an antithrombotic 
shield, which reduces the prothrombotic risk associated with 
apoptosis [54].  

Our results also showed that iNOS protein of the heart is 
elevated in untreated diabetic rats suggesting that inflamma-
tion could play a role in the pathogenesis of diabetic cardio-
myopathy in type 1 diabetes. Cheng et al. [55] and others 
[56] also found that the activity of iNOS was 3 fold higher in 
the heart of diabetic rats relative to controls. In addition, they 
found, that selective inhibition of iNOS restored cardiovas-
cular response to noradrenalin. Apoptosis has been postu-
lated to be involved in the cardiac damage associated with 
diabetes, sepsis, and dilated cardiomyopathy [57] which are 
all associated with an enhanced generation of ONOO  within 
the myocardium [11]. On the basis of these findings, 
Levrand et al. [8] propose that ONOO  may represent a ma-
jor oxidant species involved in the process of cardiomyocyte 
apoptosis in these cardiac diseases. These data imply that 
ONOO -dependent oxidant stress is instrumental in activat-
ing proapoptotic signals (caspase-3 and PARP cleavage). 
The authors added that PARP cleavage as a consequence of 
ONOO  generation was secondary to the activation of 
caspase-3, but additional mechanisms may be implicated as 
well. PARP can also be cleaved in the nucleus of cardio-
myocytes through the action of matrix metalloproteinase 2 
(MMP-2) [58], known to be activated by ONOO  [12]. Fur-
thermore, Bojunga et al. [59] showed that antioxidative 
treatment was capable of reversing changes in NO-cGMP 
system and may therefore be an important option for pre-
venting vascular damage in diabetes mellitus. Haidara et al., 
also [30] found that vitamin E was able to modulate the 
blood pressure and lipid profile in STZ-induced diabetic rats. 
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Vitamin E is an important non-enzymatic natural lipid-
soluble chain breaking antioxidant in tissue, red cells and 
plasma [60,61]. It protects against lipid peroxidation by act-
ing directly with a variety of oxygen radicals to form a rela-
tively innocuous tocopherol radical [62].  

Vitamin E prevents H2O2 – induced apoptosis in remote 
non-infarcted myocardial cells with prevention of mitochon-
drial cytochrome C release and activation of caspase 3 [63]. 
These findings indicated that antioxidant vitamins reduce 
myocyte apoptosis mediated via inhibition of mitochondrial 
pathway [21]. 

Vitamin E also seems to inhibit the release of inflamma-
tory mediators from activated monocytes [64] as well as re-
ducing smooth muscle proliferation and platelet aggregation 
[65]. 

The present study demonstrates that administration of in-
sulin and vitamin E to diabetic rats reduces oxidative stress 
and apoptosis with preservation of cardiac function as as-
sessed by the cardiac enzymes and electron microscopy. 

Yoshida et al. [66] suggested a similar effect in the eye 
lens as they found that combined treatment of vitamin E and 
insulin was useful in preventing the development and pro-
gression of diabetic cataract. Economides et al. [67] did not 
recommend the use of high dosage of vitamin E in diabetic 
patients because of their worsening effect on the endothelial 
or left ventricular function. The dose of vitamin used in this 
study was based on previous studies [68,69]. The dose is 3-
10 times the current recommended dietary allowance but is 
within human therapeutic range based on body weight [70]. 
Our findings suggest that the dose of vitamin E (300 mgKg

-1
 

body weight) chosen is both clinically relevant but also 
pharmacologically sufficient to produce antioxidant effects 
in the experimental setting [21]. 

CONCLUDING REMARKS 

Our results demonstrated that STZ-induced diabetes in 
rats leads to functional and structural changes in the heart 
which include oxidative stress and apoptosis. The changes 
were significantly ameliorated by administration of insulin 
and vitamin E which abrogate oxidative stress and produce a 
cardioprotective effect. The combination of both forms of 
treatment decreased CK activity and myocardial damage, 
thus suggesting a strategy which could reduce cardiovascular 
complications in diabetes mellitus.  
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