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Abstract: This study was carried out in Greek Cypriot males to identify risk factors that predispose to myocardial infarc-

tion (MI). Genetic and lipid risk factors were investigated for the first time in a Greek Cypriot male case-control study. 

Contrary to other studies, mean low density lipoprotein cholesterol did not differ between cases and controls. High density 

lipoprotein cholesterol on the other hand, although within normal range in cases and controls, was significantly higher in 

the control population. In agreement with many other studies, smoking was significantly more prevalent in cases com-

pared with controls. In pooled cases and controls, smokers had a significantly lower HDL-C level compared with non-

smokers. The frequency of the IL-13 R130Q homozygotes for the mutation (QQ), as well as the mutant allele were sig-

nificantly higher in cases compared with controls. The IL-13 R130Q variant, or another locus, linked to it, may increase 

the risk of MI.  
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INTRODUCTION 

Identified modifiable cardiovascular disease (CVD) risk 
factors include dyslipidaemia, hypertension, diabetes, smok-
ing, obesity and metabolic syndrome [1-6]. Dyslipidaemia is 
a major risk factor for CVD and improving lipid levels with 
statins is an effective regimen [7-11]. Many genetic risk fac-
tors have also been identified which are pro-thrombotic, pro-
inflammatory or pro-atherogenic [12,13]. It is also important 
to consider gene-gene interactions and gene-environment 
interactions since the combination of risk factors may in-
crease the severity of CVD and the risk of morbidity and 
mortality [14]. In the present study, a battery of functional 
gene polymorphisms that have been reported to increase the 
risk for myocardial infarction (MI) was selected for investi-
gation. The following genetic variables were tested: IL6-
174G/C, IL13 R130Q, Stromelysin 5A/6A, ACE D/I, ApoE, 
GPIIIa A1/A2, MTHFR C677T, ECNOS G894T, Factor V 
G1691A, Factor II G20210A, PAI-1 4G/5G and PON1 
L55M. Cases (n = 77) and controls (n = 79) were unrelated 
individuals, age 30-65 years. 

Two of the most intensively studied candidate gene po-
lymorphisms are the ACE D/I and Apo E gene polymor-
phisms. The former plays a role in blood pressure (BP) regu-
lation while the latter influences lipid metabolism. Several  
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studies found an association between the deletion allele of 
the ACE gene and the E4 allele of the ApoE gene and CVD 
[15, 16]. In contrast, case-control studies in the Greek popu-
lation do not support the latter association of CVD with the 
Apo E4 allele and further, a protective role was reported for 
the E3/4 genotype, as well as the E2 allele [17-19]. The par-
aoxonase 1 (PON1) L55M gene polymorphism was investi-
gated because this is an integral enzyme of the high density 
lipoprotein cholesterol (HDL-C) molecule that can protect 
low density lipoprotein cholesterol (LDL-C) from oxidative 
modification and subsequent initiation and progression of 
atherosclerosis [20]. Factor V, factor II, glycoprotein IIb/IIIa 
(GPIIb/IIIa) and plasminogen activator inhibitor type 1 
(PAI-1) gene polymorphisms were also investigated. These 
are functional prothrombotic polymorphisms and have been 
implicated in the pathogenesis of MI [21-23]. The Endothe-
lial constitutive nitric oxide synthase gene (ecNOS), G894T 
polymorphism was investigated as an association with the T 
allele and CVD was found in some studies [24-27]. The 
MTHFR C677T mutation has been studied to clarify its role 
in CVD. This mutation in the homozygous state is associated 
with raised circulating total homocysteine levels, possibly 
predisposing to CVD [28]. In contrast others showed no as-
sociation between the MTHFR C677T mutation and CVD 
[29]. Matrix metalloproteinases are involved in plaque rup-
ture. The stromelysin gene (MMP-3) exhibits a 5A/6A 
polymorphism where the 5A allele, is associated with sus-
ceptibility to MI [30].  

Increasing evidence implicates inflammation in athero-
sclerosis and ischaemic heart disease (IHD) and in particular 
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pro-inflammatory cytokines may promote thrombosis [31, 
32, 12]. An imbalance between pro-inflammatory and anti-
inflammatory cytokines (i.e. a predominance of Th1 over 
Th2 cytokines) is thought to play a pivotal role in the devel-
opment of IHD [33-37]. We chose interleukin-6 (IL-6), 
which has both pro- and anti-inflammatory properties and 
has been investigated in relation to MI. One study showed 
that the C allele of the IL-6 –174G/C promoter polymor-
phism was associated with MI and another reported raised 
IL-6 levels in MI patients [38, 39]. Interleukin-13 (IL-13) is 
a Th2 cytokine with anti-inflammatory properties which has 
been implicated in the pathogenesis of asthma [40]. This 
cytokine has not been investigated with respect to CVD but 
evidence from a study in patients with asthma revealed that 
women but not men were at increased risk of developing 
IHD and this could possibly be linked to IL-13 [41]. Indeed 
several IL-13 polymorphisms were identified which are as-
sociated with increased levels of IgE, a predictor of asthma 
phenotype [42]. The functional polymorphism, IL-13 Arg 
130Gln, was associated with raised IgE in asthma patients 
and this was selected in our study [40].  

MATERIALS AND METHODOLOGY 

Characteristics of the Cohort 

Cases (n = 77) and controls (n = 79) were unrelated indi-
viduals aged 30-65. Impaired renal function, hypothyroidism 
or abnormal liver functions were exclusion criteria. None of 
the patients recruited were on hypolipidaemic or antihyper-
tensive drug therapy. They were all residents of the same 
area; a southern coast city (Larnaca, Cyprus). Cases were 
individuals, who had experienced a non-fatal first MI. The 
diagnostic criteria were 2 of the following 3 observations: an 
increase in creatine kinase (CK-MB) activity, an abnormal 
electrocardiogram and intense chest pain of long duration 
(WHO diagnostic criteria). The MI patients were recruited 
for this study 2 days after their MI. Questionnaires were 
completed; lipid profiles were measured within the first 18 h 
after the MI event. Blood samples were collected for DNA 
extraction. A resting BP measurement was taken and body 
mass index (BMI) was calculated. The family history was 
also recorded. All subjects who participated in this study 
gave their informed consent, and all experimental procedures 
were carried out in accordance with the ethical standards of 
the local ethics committee and with the Helsinki Declaration 
of 1975, as revised in 2000. 

DNA ANALYSES 

Genotyping for the various polymorphisms was per-
formed as previously described [20-24, 28, 43, 44] with the 
exception of the IL-13 Arg130Gln polymorphism which was 
genotyped using a novel allelic discrimination TaqMan assay 
designed at the Department of Cardiovascular Genetics & 
Laboratory of Forensic Genetics, Cyprus Institute of Neurol-
ogy and Genetics, Nicosia, Cyprus. The assay was run on an 
ABI Prism 7700 Sequence Detector (Foster City, USA). The 
primers and probes were designed using specified software 
(Primer Express Version 1.5, Foster City, USA), which takes 
into consideration the optimum conditions for allelic dis-
crimination. The amplicon was 78 bp long. The following 
PCR primers and allelic discrimination probes were designed 
and used for genotyping:  

Forward PCR primer – AGGACCTGCTCTTACATTT 
AAAGAAACT,  

Reverse PCR primer – TGCAAATAATGATGCTTTC 
GAAGT,  

Allele 1 /probe 1- wild type (VIC – AGGGACGGTTC 
AACT, amino acid residue-arginine-R),  

Allele 2 /probe 2- mutated (FAM – AGGGACAGTT 
CAACT, amino acid residue-glutamine-Q),  

The assay was validated on 20 samples of known geno-
type using a previously designed PCR assay with the follow-
ing primers: 5'-CTT CCG TGA GGA CTG AAT GAG ACG 
GTC-3' (forward) and 5'-GCA AAT AAT GAT GCT TTC 
GAA GTT TCA GTG GA-3' (reverse), followed by NlaIV 
restriction digestion [40]. The procedure for TaqMan Assay 
performance and data analysis was carried out as instructed 
by the manufacturer of the ABI Prism 7700 Sequence Detec-
tor. PCR reagents (UNIVERSAL MASTER MIX) and oligo- 
nucleotides (PRIMERS & VIC/FAM LABELED PROBES) 
were purchased from Applied Biosystems (Foster City, 
USA). In brief, the PCR conditions for the TaqMan assay 
were as follows: 50

0
C - 2 min x 1 cycle (Temperature at 

which UNG is activated to degrade any PCR product that 
may have contaminated sample, as dUTP is used in place of 
dTTP for PCR in TaqMan assay), this is followed by 95

0
C - 

10 min (AmpliTaq Gold DNA polymerase activation) x 1 
cycle, 95

0
C - 15 secs (denaturation) then 60

0
C - 1 min (An-

nealing & Extension) x 40 cycles. 

STATISTICAL ANALYSES 

The statistical package SPSS V12 was used to perform 
the relevant statistical tests. Briefly, comparison of frequen-
cies of genotypes and alleles were achieved using the chi-
square test. Distribution of quantitative variables was deter-
mined using the Kolmogorov-Smirnov test. Mean values of 
quantitative variables between groups were compared using 
the unpaired t-test for normal data and Mann-Whitney for 
non-parametric data. Bivariate correlation analysis was car-
ried out to determine any correlation between pairs of vari-
ables (Pearson’s correlation). Binary logistic regression 
analysis was performed to determine the relative contribu-
tion of IL-13 Arg130Glu polymorphism, lower HDL-C and 
smoking on the dependant variable MI. 

RESULTS 

The frequency of diabetes in cases and controls was 16% 
and 19%, respectively and for dyslipidaemias these values 
were 56% and 54%, respectively. There were no significant 
differences when proportions were compared (chi-square 
analysis). Mean age between male cases and controls was 
not significantly different (54 ± 8 in cases vs 52 ± 10 years in 
controls). BMI and BP were all normally distributed. No 
significant differences were observed between cases and 
controls (Table 1). Total and HDL-C were normally distrib-
uted, triglycerides were positively skewed but LDL-C was 
normally distributed. Mean values for total, LDL-C and 
HDL-C were compared between cases and controls using the 
unpaired t-test and for triglycerides values were compared 
using the Mann-Whitney test. Mean values for triglycerides, 
total and LDL-C did not show any significant differences. A 
significantly higher mean HDL-C level was observed in con-
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trols compared with cases (45 ± 12 mg/dl vs 40 ± 9 mg/dl; P 
= 0.001) (Table 1). 

 

Table 1. Characteristics of Cases and Controls  

Variable Mean (±  SD) or 

Frequency  
Cases n = 77 Controls n = 79 

Age 54 (± 8) 52 (± 10) 

P value 0.224 

Frequency of diabetes 16% 19% 

P value 0.600 

Frequency of dyslipidaemia 56% 54% 

P value 0.845 

Frequency of Hypertension  28% 24% 

P value 0.611 

Frequency of Smoking 83% 58% 

P value 0.001 

 BMI 28.2 (± 4) 28.0 (± 4) 

P value 0.764 

Total Cholesterol (mg/dl) 220 (± 45) 225 (± 48) 

P value 0.460 

LDL-C (mg/dl) 139 (± 42) 142 (± 40) 

P value 0.615 

HDL-C (mg/dl) 40 (± 9) 45 (± 12) 

P value 0.001 

Triglycerides** (mg/dl) 156(53-480) 160 (23-800) 

P value 0.728 

P- value for t-test (comparison of means). BMI = body mass index; LDL-C = low 
density lipoprotein cholesterol; HDL-C = high density lipoprotein cholesterol;  

** Median value and range in parenthesis, comparison of medians by non-parametric 
statistics (Mann-Whitney test). 

 

In the case group, 83% were smokers, whereas in con-
trols only 58% were smokers (Chi-square test P = 0.001). 
Mean HDL-C levels were significantly higher in all non-
smokers compared with all smokers (46 ± 13 mg/dl vs 41 ± 9 
mg/dl; P = 0.013). A significantly higher mean value HDL-C 
was observed in controls who did not smoke compared with 
controls who did smoke (49 ± 14 mg/dl vs 45 ± 10 mg/dl; P 
= 0.038). In cases, mean HDL-C level did not differ between 
smokers and non-smokers (40 ± 9 mg/dl vs 39 ± 9 mg/dl; P 
= 0.759). HDL-C levels were significantly higher in controls 
who did not smoke compared with the corresponding MI 
group (49 ± 14 mg/dl vs 39 ± 9 mg/dl; P = 0.029) (Table 2). 

Cross tabulations between genotype and allele frequen-
cies in cases and controls indicated that frequencies were 
homogeneous between the 2 groups for all polymorphic loci 
tested except for the IL-13 R130Q polymorphism. All geno-
types were in Hardy-Weinberg equilibrium in cases and con-

trols (see Table 3). For the IL-13 R130Q polymorphism, the 
frequency of heterozygotes (RQ) as well as homozygotes for 
the mutation (QQ) was significantly higher in cases com-
pared with controls, (0.40 vs 0.28 for RQ and 0.09 vs 0.02 
for QQ; P = 0.030). In addition, the difference in the mutant 
allele frequency was significant, (0.29 in cases vs 0.16 in 
controls; P = 0.011). Data are shown in Table 4. 

 

Table 2. Comparison of Mean High Density Lipoprotein 

Cholesterol (HDL-C) Levels (mg/dl) in Cases and 

Controls as A Function of Smoking Status 

 
Mean HDL-C Level 

(±  SD) 

P-Value 

T-Test 

Cases 

Smokers + Non 

(77) smokers 

40 

(±  9) 

Controls 

Smokers + Non  

(79) smokers 

46 

(±  12) 

0.001 

Cases + Controls  

Smokers (109) 

41 

(±  9) 

Cases + Controls  

Non-smokers (46) 

46 

(±  13) 

0.013 

Controls Smokers  

(45) 

45 

(±  9) 

Controls 

Non-smokers (33) 

49 

(±  14) 

0.038 

Cases 

Smokers (64) 

40 

(±  9) 

Cases  

Non-smokers (13) 

39 

(±  9) 

0.759 

Controls 

Non-smokers (33) 

48 

(±  14) 

Cases  

Non-smokers (13) 

39 

(±  9) 

0.029 

Value in brackets indicates sample size. 

 
The correlation matrix between all variables involved 

was constructed for easy comparison between correlations 
and for determining clusters of variables that covary. The 
elements (coefficients) of the matrix are used not only as 
measures of the degree and direction between row and 
column variables and the proportion of covariation but also 
as the guide to the logistic multiple regression statistical 
analysis that follows. The significant correlations are listed 
in Table 5. The categorical independent variable smoking 
and the categorical dependent variable MI were categorized 
as “1” if the answer was “yes” i.e. that individual did smoke 
and he had an MI; and as “2” if the reverse was true, i.e. that 
individual did not smoke and he did not have an MI. By per-
forming the correlation analysis between these 2 variables, 
MI was positively correlated with a positive smoking habit (r 
= 0.270, P = 0.001). HDL-C level was positively correlated 
with the absence of an MI event (r = 0.263, P = 0.001). The 
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IL-13 R130Q gene polymorphism was given the following 
codes in the data base: “1-RR; 2-RQ; 3-QQ”. An inverse 
correlation was observed between the IL-13 R130Q gene 
polymorphism and the absence of an MI event (r = -0.212, P 
= 0.008). Smoking w as inversely correlated with HDL-C 
level (r = -0.201, P = 0.013) (Table 5). 

Contrary to most other reports, in this particular male 
population, there was no correlation between ApoE genotype 
and any of the lipid variables (Pearson correlation analysis) 
nor was there any significant difference between mean lipid 
levels when stratified by ApoE genotype using ANOVA. 
However, a trend was observed which was consistent with 
the established effect of the ApoE genotype on lipid levels. 
Specifically, mean total cholesterol level was 214 ± 40 mg/dl 
in individuals who had the 2/3 ApoE genotype (n=20), 223 ± 
47 mg/dl in individuals who had the 3/3 ApoE genotype 
(n=115), and 231 ± 55 mg/dl in individuals who had the 3/4 
ApoE genotype (n=16). The same trend was observed for 

LDL-C while triglycerides and HDL-C were more homoge-
neous for the 3 genotypes. Again there were no significant 
differences. 

Variables that were significantly different between cases 
and controls in earlier statistical analyses were selected for 
binary logistic regression analysis. These were HDL-C, 
smoking and the IL-13 R130Q polymorphism. This analysis 
kept the IL-13 R130Q polymorphism, low HDL-C and 
smoking status as predictors of MI occurrence. For smoking, 
if an individual smoked the odds of an MI occurring were 
2.7 times more likely than if an individual did not smoke (P 
= 0.016). For HDL-C as the concentration increased the odds 
of an MI occurring decreased, specifically, as the HDL-C 
level increases by 1 mg/dL, the odds of an MI occurring de-
creased by 5.4%. (P = 0.006). Finally, an individual who was 
an IL-13 QQ homozygote was found to be 5.8 times more 
likely to experience an MI than one with the wild type geno-
type; RR (P = 0.039) and an individual with an RQ genotype 

Table 3. Rare Allele Frequencies and 95% Confidence Intervals for Gene Polymorphisms in Male Cohort 

Gene Polymorphism Rare Allele Relative Frequency (95%CI) Cases Relative Frequency (95%CI) Controls P-value 

IL6 -174G/C C 0.20 (0.14-0.25) 0.22 (0.15-0.28) 0.356 

IL13 R130Q Q 0.29 (0.21-0.34) 0.16 (0.11-0.23)   0.011+ 

Stromelysin 5A/6A 5A 0.42 (0.35-0.49)  0.34 (0.27-0.42) 0.172 

ACE D/I I 0.33 (0.25-0.38) 0.34 (0.26-0.41) 0.719 

ApoE (Hinf1)* 2 0.05 (0.03-0.08) 0.08 (0.06-0.11) 

ApoE (Hinf1)* 4 0.06 (0.04-0.09) 0.05 (0.03-0.08) 

 

0.487 

GPIIIa A1/A2 A2 0.18 (0.12-0.23) 0.14 (0.09-0.20) 0.512 

MTHFR C677T T 0.40 (0.32-0.47) 0.36 (0.29-0.44) 0.642 

ECNOSG894T T 0.28 (0.23-0.37) 0.31 (0.24-0.38) 0.937 

FactorV G1691A A 0.04 (0.03-0.11) 0.07 (0.03-0.12) 0.938 

Factor II G20210A A 0.03 (0.01-0.06) 0.03 (0.00-0.05) 0.913 

PAI-1 4G/5G 4G 0.41 (0.33-0.48) 0.49 (0.41-0.56) 0.167 

PON1 L55M M 0.40 (0.32-0.48) 0.46 (0.38-0.53) 0.106 

*ApoE Hinf1 polymorphism has three alleles 2/3/4; ApoE alleles 2 and 4 are considered rare alleles; +Difference in allele frequencies between cases and controls is statistically 
significant.  

 

Table 4. IL-13 R130Q Genotype and Allele Frequencies in Case & Control Groups (Numbers in Parenthesis Represent Relative  

Frequencies) 

IL-13R130Q 

Genotypes Alleles Group 

RR RQ QQ R Q 

Total N 

Cases  39 (0.51) 31 (0.40) 7 (0.09) 109 (0.71) 45 (0.29) 77 

Controls  55 (0.70) 22 (0.28) 2 (0.02) 132 (0.84) 26 (0.16) 79  

P-value  0.030 0.011  

Pearson’s chi square test to compare frequency of genotypes and alleles of the; IL-13R130Q polymorphism between cases and controls. 



56    The Open Cardiovascular Medicine Journal, 2008, Volume 2 Xenophontos et al. 

was 2.1 times more likely to do so (P = 0.055). Data are 
shown in Table 6. If the analysis is repeated with variables: 
smoking, hypertension, hypercholesterolaemia, diabetes, 
HDL cholesterol and the IL13 R130Q SNP, the results indi-
cate that, smoking, HDL cholesterol and the IL13 R130Q 
SNP are still significant risk factors for MI, whereas hyper-
tension, hypercholesterolaemia and diabetes are not, as indi-
cated previously in t-tests and correlation analysis.  
 

Table 5. Pearson’s Correlation Coefficients and P-Values for 

Bivariate Correlation Analyses 

Pairs of Variables  

Correlated 

Pearson Correlation 

Coefficient 

P-value 

MI-SMOKING 0.270 0.001 

NO MI-HDL-C 0.263 0.001 

MI-IL-13R130Q -0.212 0.008 

SMOKING-HDL-C -0.201 0.013 

MI = myocardial infarction; HDL-C = high density lipoprotein cholesterol; IL-13 = 
interleukin 13. 
The categorical independent variable smoking and the categorical dependent variable 
MI were categorized as “1” if the answer was “yes” i.e. that individual did smoke and 

he had an MI; and as “2” if the reverse was true, i.e. that individual did not smoke and 
he did not have an MI. MI was positively correlated with a positive smoking habit. 

HDL-C level was positively correlated with the absence of an MI event. The IL-13 
R130Q gene polymorphism was given the following codes in the data base: “1-RR; 2-

RQ; 3-QQ”. An inverse correlation was observed between the IL-13 R130Q gene 
polymorphism and the absence of an MI event. Smoking was also inversely correlated 

with HDL-C levels. 

 

DISCUSSION  

Smoking and a comparatively low HDL-C level were as-
sociated with MI in Greek Cypriot men. The term “compara-
tively low” for HDL-C in our study actually refers to a value 
that is at the borderline of the acceptable lower limit of the 
normal range as defined by a pan–European survey of 8,545 
dyslipidaemic patients where an HDL-C <40 mg/dL in men 
is defined as low [45]. Smoking has been shown to be inde-
pendently associated with vascular disease and to interact 
with other genetic and environmental risk factors in the cau-

sation of vascular damage [46, 47]. More specifically, the 
pathogenic effects of smoking are attributed to its ability to 
increase LDL-C, plasma triglycerides and VLDL triglyc-
erides and to simultaneously lower HDL-C [48]. Further-
more, smoking has been shown to increase oxidation and 
nitration of LDL-C which promote the atherogenic process 
[49, 50]. Since a high percentage of the case group are 
smokers then it is highly likely that some of the above proath-
erogenic mechanisms may have contributed to the occur-
rence of MI. Our observations are in agreement with those of 
other CHD case-control studies [51, 52]. However, several 
other common CHD risk factors did not show an association 
in this study, while a novel CHD predictor emerged, the IL-
13 R130Q polymorphism. Due to the limited number of par-
ticipants in the present pilot study, this interesting associa-
tion needs to be confirmed in larger studies and the possible 
effect of other linked loci to the IL13 gene excluded.  

Surprisingly, the established risk factor LDL-C was ho-

mogeneous between cases and controls and mean values 

were within normal range. Although mean LDL-C was ho-
mogeneous between the 2 groups, LDL subfraction distribu-

tion may have been heterogeneous, being more pro-

atherogenic (LDL-3 to 7) in the case group and therefore 
potentially contributing to the risk of MI [53-55]. Survivors 

of MI may have an abundance of small, dense LDL in 

plasma compared with controls and further, that patients who 
also smoked had a more atherogenic LDL subfraction profile 

[56]. Small, dense LDL particles are more atherogenic than 

large buoyant LDL particles because they are more suscepti-
ble to form oxidized LDL and are not readily cleared [57]. 

Furthermore, since the immediate pre-MI, LDL-cholesterol 

levels were not available, we cannot rule out the possibility 
that prior to MI these values were higher than after the MI 

event. Triglycerides levels have been reported to increase 

small, dense LDL particles and therefore the risk of cardio-
vascular disease [58, 59]. In the present study, however, a 

significant difference is not observed. The range in controls 

was greater than that of cases due to the presence of an out-
lier (who smoked 40-50 cigarettes per day) in the control 

group with 800 mg/dL triglycerides. The exclusion of this 

outlier from the analysis did not alter the distribution of these 
data or result in a significant difference in triglyceride levels 

Table 6. Binary Logistic Regression Analysis 

95,0% C.I. for EXP(B) 

Variable B S.E. Wald df Sig. Exp(B) 

Lower Upper 

Smoker 0.981 0.407 5.796 1 0.016 2.667 1.200 5.925 

HDL-C -0.056 0.020 7.662 1 0.006 0.946 0.909 0.984 

IL-13     6.804 2 0.033       

IL-13(1-RQ) 0.723 0.378 3.671 1 0.055 2.061 0.984 4.320 

IL-13(2-QQ) 1.758 0.851 4.263 1 0.039 5.799 1.093 30.754 

Constant 1.237 0.924 1.792 1 0.181 3.444     

HDL-C = high density lipoprotein cholesterol; IL-13 = interleukin 13. 
Variables which are significant contributors to the occurrence of an MI in a sample of Cypriot men (smoking, relatively low HDL-C and the IL-13 R130Q mutation). 
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between the 2 groups. Since there is no difference between 

groups in triglyceride levels, the hypothesized difference in 

the LDL subfraction profile in our 2 groups may be mediated 
by other factors such as smoking [58-60]. In contrast to the 

above hypotheses, no correlation was observed between 

smoking and triglyceride level in this study, or between MI 
occurrence and triglyceride level. It is therefore more likely 

that any effects of the hypothetical proatherogenic small 

dense LDL profile preponderance in cases compared to con-
trols is caused largely by smoking.  

Future studies will need to include LDL subfractions. 
Such testing has in fact been suggested by the (NCEP ATP 
III) National Cholesterol Education Program Adult Treat-
ment Panel in addition to the conventional lipid profile [61]. 
In addition, the ApoE genotype did not seem to have a sig-
nificant effect on total cholesterol level. The Mediterranean 
diet may account for the relatively normal mean cholesterol 
level in the study population as a whole.  

A significantly higher mean HDL-C level was observed 
in controls compared with cases. In cases, the mean HDL-C 
level was low irrespective of smoking status suggesting that 
other factors may be involved in lowering this protective 
factor. Other genetic factors or dietary habits/deficiency may 
be the cause of the significantly lower HDL-C in cases com-
pared with controls. HDL-C levels were significantly higher 
in controls that did not smoke compared with the corre-
sponding MI group (48 mg/dl vs 39 mg/dl P = 0.029). The 
latter comparison highlights the effect of low HDL-C per se 
on the occurrence of an MI. Our findings regarding HDL-C 
suggest that the currently accepted lower value of (40 mg/dl) 
as satisfactory should be raised (Adult Treatment Panel III-
www.nhlbi.nih.gov/guidelines/cholesterol, 2005). However, 
such a suggestion is limited by the small numbers in our 
study and it may only apply to a Mediterranean population 
known to have a very high smoking rate. Several interven-
tion studies, such as the Veterans Affairs High-Density 
Lipoprotein Cholesterol Intervention Trial (VA-HIT) and 
HDL-Atherosclerosis Treatment Study (HATS), provided 
evidence that a rise in HDL-C significantly reduces cardio-
vascular risk [6-8, 62-64]. The protective effect of HDL 
arises from multiple actions including reverse cholesterol 
transport [63, 65, 66]. Furthermore, HDL enhances nitric 
oxide synthesis and improves endothelium-dependent relaxa-
tion [67].  

Many studies focused on lipid lowering as a way of re-
ducing the risk for CVD. However, with recent evidence for 
the involvement of inflammation in atherosclerosis, it is 
relevant that statins exert anti-inflammatory effects. This 
effect together with lipid lowering and other actions may 
contribute to the overall clinical benefit observed in trials 
[32, 68, 69].  

The association of the IL-13 R130Q polymorphism with 
MI in Greek Cypriot men in the present pilot study is quite 
novel and provides the impetus for the design of future ex-
periments using a larger cohort size. The investigation of this 
variant at different stages of acute coronary syndromes 
(ACS) may also be an important study, as the variant may be 
of predictive value for MI and may have important implica-
tions for preventive and therapeutic regimens. In light of the 
many functions of IL-13 and the pathways in which it is in-

volved, some hypotheses may be proposed regarding this 
novel association. Wild type IL-13 suppresses macrophage 
production of proinflammatory mediators, regulates extracel-
lular matrix, inhibits tissue factor expression induced by bac-
terial lipopolysaccharides, reduces the pyrogenic effects of 
IL-1 or TNF thus protecting endothelial and monocyte sur-
faces against inflammatory mediator-induced procoagulant 
changes [70-72]. It is possible, therefore that this variant 
may, favour coagulation, thrombus formation and coronary 
artery occlusion or it may activate matrix metalloproteinases 
and consequently extracellular matrix degradation leading to 
coronary artery plaque destabilization, rupture and ultimately 
MI. Furthermore, a comparison of recombinant wild type IL-
13 and IL-13 R130Q activity in primary monocytes has indi-
cated that IL-13 R130Q is more active in inducing the main 
steps in the IL-13-dependent signaling pathway, including 
IgE synthesis [73]. In relation to this, an earlier study re-
ported that among other raised inflammatory markers en-
countered in MI patients, raised IgE is also observed. It is 
further suggested that this may participate in plaque-rupture 
and ultimately in MI events [74]. An, alternative hypothesis 
is that these studies also provide a possible mechanism 
which may explain the association of the IL-13 R130Q mu-
tation, (possibly by raising IgE) and occurrence of MI events 
in our pilot study. In future studies we will investigate 
whether MI patients will show a concurrent association with 
the IL13 R130Q mutation, raised IL-13 activity as well as 
raised IgE. Additionally, the IL-13 R130Q variant has been 
linked to eosinophilia, and the latter has been shown to pre-
dict cardiovascular and cerebrovascular mortality possibly 
through endothelial inflammation and ultimately atheroscle-
rosis. The mechanisms suggested include the secretion of 2 
proteins (cationic protein and major basic protein) which 
activate mast cells to release histamine which causes coro-
nary artery spasm and arrhythmias. Secondly, arachidonate 
15-lipoxygenase which is expressed at high levels in eosino-
phils may be involved in oxidative modification of LDL cho-
lesterol and therefore in atherosclerosis, a major cause for 
MI [75, 76]. In conclusion, the important findings of this 
first pilot study concerning Greek Cypriot men and MI, point 
out that larger scale studies should be encouraged to confirm 
and study further the role of the putative novel genetic risk 
factor IL-13 R130Q and lipid levels in MI in Cyprus.  
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