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Abstract:

Aim:

Outward arterial remodeling occurs early in cardiovascular disease (CVD) and, as such, measuring arterial dimension may be an early indicator of
subclinical disease.

Objective:

The objective of our study was to measure area at three aortic locations: The ascending thoracic (ASC), the descending thoracic (DSC), and the
abdominal (ABD), and to test for association with traditional CVD risk factors and subclinical CVD throughout the body.

Methods:

We measured ASC, DSC, and ABD using computed tomography (CT) in 408 African ancestry men aged 50-89 years. We assessed prevalent CVD
risk factors via participant interview and clinical exam, and subclinical CVD, including carotid atherosclerosis through B-mode carotid ultrasound,
vascular calcification via chest and abdominal CT, and arterial stiffness via pulse-wave velocity (PWV).

Results:

As expected, all aortic areas were in correlation with each other (r=0.39-0.63, all p<0.0001) and associated with greater age, greater body size, and
hypertension  (p≤0.01  for  all).  After  adjustment  for  traditional  CVD risk  factors,  ASC was  positively  associated  with  carotid  atherosclerosis
(p<0.01). A greater area at each location was associated with greater PWV (p<0.03 for all), with the DSC region showing the most significant
association.

Conclusion:

This  is  the  first  study  to  test  the  association  of  aortic  area  measured  at  multiple  points  with  subclinical  CVD.  We found  that  combined  CT
assessment of ascending and descending aortic area may indicate a high risk of prevalent subclinical CVD elsewhere in the body independent of
age, body size, and blood pressure.
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1. INTRODUCTION

The prevalence of  hypertension is  escalating at  alarming
rates  in  African  Americans  and  other  African  ancestry
populations around the world [1].  Geographical  regions with
 African ancestry  populations are expected to  have the largest
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proportional increases in hypertension in the coming decades
[2]. In order to handle the greater force exerted on the arterial
wall  from  high  blood  pressures,  arteries  throughout  the
vasculature  dilate,  a  process  known  as  outward  arterial
remodeling [3].  Carotid diameter  is  an established marker of
subclinical  cardiovascular  disease  (CVD),  and  is  associated
with  increased  blood  pressure,  age,  body  size,  and  other
cardiovascular  risk  factors  [4  -  6].  In  addition,  high  blood
pressure  also  makes  arteries  vulnerable  to  damage  and
atherosclerosis [3, 7]. As atherosclerotic plaque occurs in the
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arterial  wall,  lumen  diameter  decreases.  Thus,  there  exists  a
relationship between blood hemodynamics,  arterial  diameter,
and atherosclerotic plaque.

All  arteries,  including  the  aorta,  undergo  this  outward
remodeling  [3].  While  the  proximal  aorta,  including  the
ascending  region  and  arch,  has  been  studied  as  a  marker  of
subclinical disease [8, 9], it is generally considered to primarily
reflect the risk of aneurysm development [8, 10 - 13]. Due to
its  distance from the heart,  the  descending and/or  abdominal
aortic  size  may  be  more  reflective  of  general  arterial
remodeling [14]. Given that the full thoracic aorta is captured
on  clinical  cardiac  computed  tomography  (CT)  scans,
assessment of its size throughout the chest has great potential
utility to gauge not only risk of aneurysm, but other subclinical
diseases  as  well.  However,  there  have  been  very  few
epidemiologic  studies  on  aortic  size  outside  of  the  proximal
location,  and  none  of  them showed  the  ability  to  compare  it
with  other  established  subclinical  cardiovascular  disease
(CVD)  markers.

Therefore,  the  purpose  of  this  study  was  to  use  a  novel
method to measure the aortic diameter at three locations along
its length: 1) proximal and2) distal to the heart in the thoracic
cavity,  and  3)  in  the  abdomen,  and  to  test  the  association  of
these measures with established markers of subclinical CVD in
a population-based cohort of individuals with a large burden of
hypertensive disease. We conducted this study involving 408
African  Caribbean  men  from  the  Tobago  Health  Study  who
had  chest  and  abdominal  CT  scans,  in  addition  to,  multiple
aspects of subclinical CVD measured at the same time.

2. MATERIALS AND METHODS

2.1. Tobago Health Study (THS)

Between 1997 and 2003, previously unscreened 3,170 men
aged  40-79  were  recruited  for  a  population-based  prostate
cancer  screening  study  on  the  Caribbean  island  of  Tobago,
Trinidad  and  Tobago  [15].  To  be  eligible,  men  had  to  be
ambulatory,  noninstitutionalized,  and  not  terminally  ill.
Approximately  60%  of  all  age-eligible  men  on  the  island
participated (n=3375), and participation was similar across the
island  parishes.  Between  2014  and  2016,  856  men  were
recruited  for  a  follow-up  clinical  examination  that  included
measures of subclinical CVD and chest and abdominal CT in a
subset of individuals. The current analysis included 408 men
from the follow-up visit who had aortic area measured, as well
as  data  for  all  other  subclinical  CVD  measures.  The
Institutional Review Boards of the University of Pittsburgh and
the Tobago Ministry of Health and Social Services approved
this  study.  All  participants  provided  a  written  informed
consent.

2.2. Computed Tomography (CT)

Thoracic and abdominal aortic areas were measured from
the chest and abdominal CT scans collected using dual slice,
high-speed NX/I computed tomography (GE Medical Systems,
Waukesha, WI, USA). Digital imaging and communications in
medicine  (DICOM) images  were  securely  sent  electronically
from Tobago to the Vanderbilt University Medical Center for

archiving  and  analysis.  Experienced  analysts  (JGT  and  SN)
trained  by  a  board-certified  radiologist  (JJC)  identified  and
measured  aortic  area  at  all  three  locations  using  an  Apple
workstation  running  customized  OsiriX  MD  software
(https://www.osirix-viewer.com).  The  ascending  (ASC)  and
descending (DSC) thoracic aortic areas were measured on the
same transverse plane at the location of the pulmonary artery.
While the abdominal (ABD) aortic area was measured above
the  bifurcation  of  the  abdominal  aorta  proximal  to  where  it
splits  into  the  iliac  arteries.  In  each  case,  the  vessel  was
visualized in OsiriX MD 3D multiplanar reconstruction mode
to determine the centerline of the artery. The outer wall of the
aorta  was  circumscribed  and  measured  orthogonally  to  the
vessel centerline. The mean of three contiguous 3 mm thick CT
slices was used for each aortic area measure. These measures
had  an  intra-class  correlation  coefficient  of  0.92  in  a  5% re-
read of the study participants.

The  use  of  non-contrast  CT  for  measurement  of  aortic
dimensions  was  validated  in  cynomolgus  monkeys  by
comparing CT-derived dimensions with those measured in situ
in  exsanguinated  monkeys  sacrificed  as  part  of  another
experiment.  Whole-body  CT  imaging  was  performed  on
anesthetized monkeys using a Toshiba 32 slice scanner (Tokyo,
Japan) at 120 kVp and 300 mA and a helical pitch of 21, pitch
factor=0.625  with  0.5  sec  rotation  speed.  The  thoracic  aorta
was  contoured  on  contiguous  0.5  mm  axial  CT  slices  by  an
experienced analyst providing excellent agreement with in situ
measures in the ascending (r=0.98) and good agreement in the
descending  aorta  (r=0.83).  All  animal  manipulations  and
procedures were performed according to the guidelines of state
and  federal  laws,  the  US  Department  of  Health  and  Human
Services,  and the  Animal  Care  and Use  Committee  of  Wake
Forest University School of Medicine.

2.3. Subclinical CVD Measures

Arterial  calcification was measured using the same chest
and  abdomen  CT  images  used  for  aortic  area  measurement.
Coronary artery calcification (CAC) was measured from chest
CT  from  the  carina  through  the  entire  inferior  aspect
(diaphragmatic)  of  the  heart.  Whereas  abdominal  aortic
calcification  (AAC)  was  measured  from  L3  to  S1  from  the
abdominal  CT  images.  These  images  were  scored  for
calcification presence (yes/no), as well as for severity using the
Agatston  method  [16]  by  the  Carr  laboratory  at  Vanderbilt
University  Medical  Center.  Common  carotid  artery  images
were obtained using B-mode ultrasonography from a portable
ultrasound  machine  (Cypress,  Siemens/Acuson,  Munich,
Germany). Two images, each of the left and right, near and far
walls of the distal common carotid artery (1 cm proximal to the
carotid  bulb),  were  collected  and  sent  to  the  University  of
Pittsburgh Ultrasound Research Laboratory (URL), where they
were  read  using  a  semi-automated,  edge-detection  reading
system  (Dr.  Gustavsson,  Sweden).  These  images  produced
measures  of  carotid  intima-media  thickness  (cIMT;  mm),
carotid  inter-adventitial  diameter  (IAD;  mm),  and  carotid
plaque  presence  (yes/no).  Using  an  automated  waveform
analyzer (Colin VP2000, Komaki, Japan), brachial-ankle pulse-
wave velocity (PWV; cm/s) was measured by recording pulse
volume waveforms via cuffs equipped with plethysmographic
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sensors  placed  over  the  brachial  and  tibial  arterial  sites.
baPWV is the distance in centimeters between the brachial and
ankle  arterial  recording  sites  divided  by  the  time  delay  in
seconds  between  the  foot  of  the  respective  waveforms.  The
distance  or  path  length  for  brachial/ankle  arterial  sites  was
calculated based on a height-based algorithm [17].

2.4. Other Data Sources

Blood pressure readings were taken three times using an
automated blood pressure cuff (Omron Healthcare, Inc, Vernon
Hills,  IL,  USA)  while  the  participant  was  sitting  and  with  5
min of rest in between the measurements. The average of the
2nd and 3rd readings was used as the mean systolic and diastolic
blood pressure (SBP and DBP, respectively). Hypertension was
defined using the American College of Cardiology (ACC) 2017
guidelines  [18]  as  SBP  ≥130  mmHg,  DBP  ≥80  mmHg,  or
current  use  of  antihypertension  medication.  Standing  height
was  measured  twice  using  a  wall-mounted  stadiometer  and
averaged to  the nearest  0.1 cm. Weight  was measured to  the
nearest  0.1 kg using a balance beam scale.  Body mass index
(BMI) was calculated as the ratio of weight to height squared
(kg/m2).  Diabetes  was  defined  using  fasting  serum  glucose
levels  (≥126  mg/dl)  and/or  diabetic  medication  use.
Dyslipidemia  was  defined  by  statin  or  other  lipid-lowering
medication use. The history of cardiovascular disease was self-
reported and included myocardial infarction, stroke, congestive
heart  failure,  angina,  rheumatic  heart  disease,  or  intermittent
claudication.

Standardized interviewer-administered questionnaires were
used to collect demographic, health history, family history, and
lifestyle information. Smoking was defined as current, former,
or never smokers. Former smokers were defined as men who
had previously smoked >100 cigarettes, but were not currently
smoking.  Regular  alcohol  consumption  was  defined  for  this
study as drinking ≥4 drinks/week over the previous 12 months
because alcohol  intake is  generally  very low in the THS.  As
activity was difficult to quantify in this cohort using standard
questionnaires  developed  in  the  US,  we  have  assessed  a
number of metrics and determined sedentary behavior to be the
strongest correlate of cardiometabolic health [19]. Therefore,
sedentary  behavior  was  dichotomized  at  the  median  into
greater  vs.  lesser  using  reported  TV  watched  per  week
(median=14  h).

2.5. Statistical Analysis

We  examined  the  distribution  of  each  aortic  area  and
subclinical  CVD  variable  for  normality  and  outliers,  and
transformed as  necessary.  In  order  to  account  for  the  largest
contributors to arterial size, all analyses were adjusted for age
and  height.  Spearman  correlation  was  used  to  determine  the
correlation  between  aortic  area  measures.  We  used  age-  and
height-adjusted linear  regression to  determine the  effect  of  a
1SD greater or presence of each CVD risk factor on each aortic
area.  Then, stepwise linear regression was used to determine
the CVD risk factors (independent variables) with independent
associations  with  each  aortic  area  (dependent  variables).
Stepwise regressions forced the age and height to be included
in each model, and required a p-value of 0.2 to enter into the

model and a p-value of 0.05 to remain in the model. We used
model  R-square  and  assessed  variation  inflation  factors  to
consider related CVD risk factors, including weight vs. BMI,
and  SBP,  DBP  and  hypertension  treatment  vs.  hypertension
status.

To  assess  the  predictive  associations  of  aortic  areas
(independent  variables)  with  subclinical  CVD  measures
(dependent  variables),  we  used  multiple  linear  or  logistic
regression, as appropriate. These models were first adjusted for
only the CVD risk factors determined to have an independent
association  with  aortic  areas  in  the  stepwise  modeling
procedures  (multivariable  model),  and  then  additionally
adjusted  for  all  measured  CVD  risk  factors  (full  model).
Sensitivity analyses for these results were also conducted in the
subset  of  individuals  who  did  not  report  a  history  of  CVD
(n=385).

Lastly, in order to determine the potential utility of aortic
area  measures  taken  only  from  chest  CT,  we  identified
individuals  in  the  top  quartile  of  each  of  the  ascending  and
descending aortic areas and categorized them into 4 groups: 1)
individuals not in the either top quartile (reference group for all
analyses,  n=262);  2)  individuals  in  the  top  quartile  of  the
ascending  aortic  area  only  (n=45);  3)  individuals  in  the  top
quartile  of  the  descending  aortic  area  only  (n=43);  and  4)
individuals  in  the  top  quartile  of  both  the  ascending  and
descending aortic areas (n=59). Then we used nominal logistic
regression to determine the association of being in any of these
large  aorta  groups  with  the  odds  of  having  each  subclinical
CVD adjusting for all measured CVD risk factors (full model).
Having subclinical CVD was defined by either the presence of
plaques (for CAC, AAC, and carotid plaque) or by being in the
top quartile of continuous subclinical CVD measures (for CAC
and  AAC  severity,  cIMT  and  IAD,  and  PWV).  All  analyses
were performed using SAS version 9.3 (SAS Institute,  Cary,
NC, USA).

3. RESULTS

3.1. Characteristics of the THS

Men were aged 64 years on average, with a range of 50-89
years.  They  were  slightly  overweight,  and  80%  were
hypertensive. The prevalence of other cardiometabolic diseases
was 25% for diabetes and 15% for dyslipidemia, but only 6%
of men reported having a history of any CVD event. Few men
were  current  smokers  (7%)  or  more  than  occasional  alcohol
drinkers  (14%),  though  over  half  of  men  reported  watching
more than 14 h  of  TV per  week.  Atherosclerotic  plaque was
present in 60% (AAC), 30% (CAC) and 15% (carotid plaque)
of  men.  Assuming  an  Agatston  score  of  300  as  significant,
arterial calcifications were generally not severe (median scores:
AAC 106 and CAC 0). PWV was 1655 cm/s on average. Mean
unadjusted aortic areas were 10.1 cm2, 6.2 cm2, and 3.3 cm2, for
the  ASC,  DSC,  and  ABD  aortic  locations,  respectively.  All
aortic areas were significantly correlated with each other (all
p<0.001), with Spearman correlation estimates adjusted for age
and height  being highest  for  DSC and ABD (0.61)  and ASC
and DSC (0.60), and lower for ASC and ABD (0.34; data not
shown) (Table 1).
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Table 1. Descriptive characteristics of the 408 tobago health study men.

Mean±SD or %
CVD Risk Factors

Age 63.7±8.5
Height (cm) 175.2±6.8
Weight (kg) 85.1±14.8

Body Mass Index (BMI; kg/m2) 27.7±4.3
Systolic Blood Pressure (SBP; mmHg) 143.2±22.4

Diastolic Blood Pressure (DBP; mmHg) 79.7±12.1
Hypertension (%) 79.5

Hypertension treatment (%) 44.7
Diabetes (%) 24.5

Dyslipidemia (%) 14.7
History of CVD (%) 5.7
≥4 drinks/week (%) 14.2

Current smoking (%) 6.6
Former smoking (%) 20.5

Watch >14h TV/week (%) 51.2
Subclinical CVD Measures

Any Coronary Artery Calcification (CAC; %) 30.1
Any Abdominal Aortic Calcification (AAC; %) 62.1

CAC Score (Agatston)* 0(0-34.3)
AAC Score (Agatston)* 105.9(0-674.2)

Carotid Plaque (%) 14.9
Carotid Intima-media Thickness (cIMT; mm) 0.88±0.15
Carotid Interadventitial Diameter (cIAD; mm) 7.93±0.85

Pulse-wave Velocity (PWV; cm/s) 1655±357
Aortic Areas

Ascending (ASC; mm2) 10.2±2.3

Descending (DSC; mm2) 6.2±1.2

Abdominal (ABD; mm2) 3.3±0.7
*Distribution is shown as median (Inter-quartile range) due to large skew in variable.

3.2.  Association  of  CVD  Risk  Factors  with  Aortic  Areas
(Table 2)

Greater age, taller height, greater weight or BMI, greater
DBP,  hypertension,  and  hypertension  treatment  were  all
associated with larger  areas at  each measured aortic  location
(all  p<0.05).  Additionally,  greater  SBP  was  individually
associated  with  DSC  (p-value  <0.001).  However,  no  other

traditional CVD risk factors listed in Table 2 were associated
with  any  aortic  area  at  p<0.05  after  adjustment  for  age  and
height.  Independent correlates for  ASC included age,  height,
BMI,  SBP,  DBP,  and  hypertension  treatment.  For  DSC,
independent  correlates  included  age,  height,  BMI,  and  DBP.
While only age, height, and BMI were independent correlates
of ABD.

Table 2. Associations of Individual CVD Risk Factors with Aortic Areas.

Unit ASC DSC ABD
Age (years)* 8.5 0.432 # [0.001] 0.241 # [0.001] 0.160 # [0.001]
Height (cm)* 6.8 0.322 # [0.005] 0.132 # [0.026] 0.125 # [0.001]
Weight (kg) 14.8 0.515 [0.001] 0.558 [0.001] 0.230 [0.001]

Body Mass Index (BMI; kg/m2) 4.3 0.468 # [0.001] 0.500 # [0.001] 0.205 # [0.001]
Systolic Blood Pressure (SBP; mmHg) 22.4 0.174# [0.077] 0.202 [0.001] 0.033 [0.166]

Diastolic Blood Pressure (DBP; mmHg) 12.1 0.508 # [0.001] 0.317 # [0.001] 0.087 [0.002]
Hypertension (%) 1 0.792 [0.002] 0.537 [0.001] 0.164 [0.014]

Hypertension treatment (%) 1 0.799 # [0.001] 0.548 [0.001] 0.199 [0.005]
Diabetes (%) 1 0.354 [0.169] 0.147 [0.299] 0.090 [0.170]

Dyslipidemia (%) 1 0.548 [0.100] 0.235 [0.207] 0.125 [0.297]
History of CVD (%) 1 -0.206 [0.750] 0.109 [0.541] 0.186 [0.360]
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Unit ASC DSC ABD
≥4 drinks/week (%) 1 0.552 [0.099] 0.156 [0.283] 0.153 [0.107]

Current smoking (%) 1 0.010 [0.898] -0.164 [0.596] 0.001 [0.785]
Former smoking (%) 1 0.086 [0.492] 0.120 [0.295] -0.028 [0.989]

Watch >14h TV/week (%) 1 0.078 [0.534] 0.184 [0.150] 0.009 [0.813]
Effects are shown as age- and height-adjusted β [p-value] effect on each aortic area per 1 unit (either 1 standard deviation or positive indication) difference in each CVD
risk factor. Significant associations (P<0.05) are indicated by BOLD type. *Models for age are unadjusted, and models for height are adjusted for age only. #Indicates a
CVD risk factor that was determined to be independently associated with the aortic area from separate stepwise regression in which age and height were forced into the
model.

Fig. (1). Odds Ratios for Prevalent Subclinical CVD by Composite Assessment of Ascending and Descending Aortic Areas
Men were categorized into four groups based on the chest CT aortic areas as being in the top quartile of the ASC only (n=45), the DSC only (n=43),
both aortic areas (n=59), or neither (n=262; referent group). Odds ratio estimates are displayed (diamond marker) and 95% CI (error bars) is shown
for subclinical CVD in each panel (a-h) by each large aortic area group compared to the group with neither aortic area in the top quartile. Referent
group estimates (all OR = 1.0) are not shown, though the OR=1.0 threshold is highlighted via a dashed line.

(Table 2) contd.....
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Table 3. Multivariable Adjusted* Associations of Aortic Areas with Subclinical CVD Measures.

Ascending (ASC) Descending (DSC) Abdominal (ABD)
MV* Full* MV* Full* MV* Full*

Logistic Regression
Any Coronary Artery Calcification (CAC; %) 1.12 [0.367] 1.16 [0.280] 0.95 [0.675] 0.94 [0.633] 0.97 [0.829] 0.99 [0.917]

Any Abdominal Aortic Calcification (AAC; %) 1.07 [0.570] 1.06 [0.684] 1.26 [0.093] 1.22 [0.166] 2.13 [0.001] 2.23 [0.001]
Carotid plaque (%) 1.31 [0.063] 1.30 [0.084] 1.00 [0.987] 1.00 [0.982] 1.14 [0.351] 1.15 [0.350]

Linear Regression
CAC Score (Agatston) 17.9 [0.156] 12.7 [0.157] -30.7 [0.584] -31.6 [0.518] -12.7 [0.942] -16.1 [0.986]
AAC Score (Agatston) 106.7 [0.326] 89.5 [0.469] 95.5 [0.163] 79.3 [0.236] 345.8 [0.001] 344.0 [0.001]

Carotid Intima-media Thickness (cIMT; mm) 0.02 [0.011] 0.02 [0.007] 0.01 [0.086] 0.01 [0.059] 0.01 [0.442] 0.01 [0.378]
Carotid Interadventitial Diameter (cIAD; mm) 0.30 [0.001] 0.30 [0.001] 0.23 [0.001] 0.23 [0.001] 0.18 [0.001] 0.18 [0.001]

Pulse-wave Velocity (PWV; cm/s) 32 [0.018] 28 [0.028] 65 [0.001] 72 [0.001] 56 [0.001] 53 [0.001]
Distributions are expressed as mean ± standard deviation (SD) or frequency (%), as appropriate. All associations are shown as the β (linear) or Odds Ratio (logistic) [p-
value] for the relevant subclinical CVD measure per 1 SD greater aortic measure.  *Models adjusted for independent risk factors selected from stepwise regression
procedures Table 3 are shown under columns labelled “MV” for multivariable, while models adjusted for all CVD risk factors are shown under columns labelled “Full”.
Why are the refs listed again?

3.3. Association of Aortic Areas with Subclinical CVD

After adjustment for independent correlates of aortic areas
from  Table  2,  each  of  the  larger  aortic  areas  at  all  three
locations was associated with greater carotid IAD (all p<0.001)
and  greater  PWV  (all  p<0.02).  When  entering  all  three
measures into a single model, no individual aortic area was an
independent  correlate  of  IAD;  however,  DSC  was  the  only
independent correlate of PWV (p=0.006; data not shown). In
addition,  greater  ASC  was  associated  with  greater  cIMT
(p=0.011)  and  nominally  associated  with  carotid  plaque
presence (p=0.06). Greater ABD was associated with both the
presence  and  severity  of  AAC  (both  p<0.001).  However,  no
aortic  area  was  associated  with  CAC  presence  or  severity.
Results were largely similar after adjustment for all measured
CVD risk factors (Table 3) and in the subset of men without a
history of clinical CVD (n=385; Supplemental Table).

3.4. Association of Chest CT Measured Aortic Areas with
Subclinical CVD

After categorizing men into large vs. not large chest aortic
areas  (ASC and DSC) based  on  being  in  the  top  quartile  for
either or both, we determined the association of being in these
categories with subclinical CVD throughout the body adjusting
for  all  measured CVD risk factors  (Fig.  1).  While  all  groups
had  greater  odds  of  large  carotid  IAD,  only  men  with  large
ASC  had  significantly  greater  odds  of  carotid  plaque  (OR:
2.78, 95% CI: 1.16-6.66), and only men with both large ASC
and DSC had greater odds of a thick cIMT (OR: 2.82, 95% CI:
1.36-5.88). Odds of a high PWV were highest in men with only
a large DSC (OR: 4.11, 95% CI: 1.58-10.70); men with both
large ASC and DSC also had significantly greater odds of high
PWV (OR: 3.54, 95% CI: 1.48-8.47).  Interestingly, while no
chest  aortic  area  was  individually  associated  with  CAC  or
AAC,  men  with  both  large  ASC  and  DSC  had  significantly
higher  odds  of  any  AAC  and  of  severe  CAC  and  AAC  (all
p<0.04).  Results  were  similar,  and  interpretations  were
unchanged after  including adjustment for CAC in all  models
(data  not  shown),  suggesting  information  gained  from aortic
size on chest CT is independent of coronary calcification.

4. DISCUSSION

In this study, we measured the aortic area at three points
along  the  length  of  the  artery:  the  ascending  aorta,  the
descending thoracic aorta, and the lower abdominal aorta. As
expected, these measures were in correlation with each other,
and  were  also  associated  with  greater  carotid  diameter,  a
known indicator of outward arterial remodeling [4, 7, 20, 21].
Similar to other reports [8, 9, 22], all aortic areas were larger
with older age, greater body weight, obesity, and higher blood
pressures,  and  were  larger  in  hypertensives  vs.  non-
hypertensives.  However,  no  other  traditional  cardiovascular
risk  factors,  such  as  dyslipidemia,  smoking,  alcohol  intake,
activity level, or diabetes, were associated with the aortic area.
Nonetheless, the aortic area appeared to be a novel correlate of
subclinical  CVD elsewhere in the body,  including cIMT and
plaque,  abdominal  aortic  calcification,  and  arterial  stiffness.
While the ascending and descending aortic areas were captured
from  chest  CTs  used  to  assess  CAC,  the  information  they
provided  appeared  to  be  largely  unassociated  with  CAC
presence  or  severity.

Thoracic and abdominal aortic diameter reference values
have been reported for the Framingham Heart Study [22] and
others [23 - 26] using alternative measurement protocols [22].
However,  this  is  the  first  study  to  measure  aortic  size  at
multiple locations and to assess their independent associations
with  CVD  risk  factors  and  subclinical  measures  of  CVD
throughout  the  body.  A  number  of  previous  studies  have
measured the proximal ascending aortic diameter in relation to
aneurysm risk [8 - 13] and other CVD [27 - 31]. These studies,
which were either conducted in hypertensives or patients with
aortic  aneurysm,  found  an  inverse  association  between
proximal aortic size and arterial stiffness that was considered
by the authors to suggest a mismatch in hemodynamic forces.
In  contrast,  in  this  population-based  cohort  of  African
Caribbean  men,  we  found  a  positive  association  between
greater  ascending,  i.e.,  the  proximal  aorta,  aortic  size  and
greater PWV after adjustment for CVD risk factors. In fact, all
aortic  areas  showed  significant  positive  associations  with
arterial  stiffness,  and  when  taken  together,  the  descending
aortic location was the strongest and only independent correlate
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of arterial stiffness. The measure of PWV used in this study,
brachial ankle PWV, is a mixed measure of arterial stiffness as
it is derived from not only the central arteries (i.e., as carotid
femoral  PWV does),  but  the  peripheral  arteries  as  well  [32].
However, brachial ankle PWV has been shown to be a rigorous
marker  of  arterial  stiffness  throughout  the  vasculature  and is
highly correlated with other measures of central and peripheral
PWV [33 - 35]. This suggests that assessment of aortic size in
the  descending  thoracic  segment  rather  than  the  proximal
segment  may  serve  as  an  early  indicator  of  adverse  arterial
remodeling in asymptomatic individuals.

Our  data  suggest  that  the  proximal  ascending  aorta  is
associated  with  measures  of  subclinical  atherosclerosis
elsewhere  in  the  body,  including  cIMT  and  plaque,  even
independent  of  traditional  CVD  risk  factors.  Whereas  the
abdominal  aorta  is  associated  with  subclinical  markers  of
arterial aging, such as abdominal aortic calcification. It should
be noted that the aortic area was measured in the same CT scan
slices as aortic calcification, so there does not appear to be a
great  clinical  utility  for  this  measure.  The  ability  to  infer
correlated  subclinical  atherosclerotic  burden  throughout  the
body from a cardiac CT that was ordered for another purpose
(i.e.,  CAC  measurement)  may  be  clinically  valuable.
Importantly, all findings were largely similar in the subset of
men  without  any  history  of  CVD  events,  who  would  be  the
target  population  for  early  subclinical  CVD  risk  screening.
Since African ancestry individuals are at particularly high risk
for  subclinical  and  clinical  vascular  disease  related  to  high
blood  pressure  vs.  atherosclerotic  lipid  deposition  [36],  it  is
important  to  evaluate  novel  indicators  of  subclinical
hemodynamic  disease  in  this  population  segment.  However,
additional studies are needed to determine if these findings are
unique  to  this  cohort,  or  are  generally  applicable  across
ethnicities  and  sex.

As  aortic  size  throughout  the  thoracic  cavity  is  captured
incidentally  during  clinical  cardiac  CT imaging  studies,  it  is
possible that regular measurement and tracking of this size as
an indicator of subclinical CVD could be used for future CVD
event  risk  stratification.  To  that  end,  in  Fig.  (1),  we
demonstrate the hypothetical ability to discern individuals with
subclinical CVD throughout the body by combined assessment
of  the  ascending  and  descending  thoracic  aorta  alone.  From
these  analyses,  even  after  adjusting  for  traditional
cardiovascular  risk  factors,  including  age  and  body  size,
individuals  with large ascending and descending aortic  areas
had greater odds of aortic calcification, carotid atherosclerosis,
and arterial stiffness. However, these are hypothetical findings,
and  traditional  risk  stratification  and  clinical  interpretation
studies  are  needed.

Even  though  the  cardiac  CTs  were  initially  gathered  to
assess CAC, the aortic area was not associated with CAC, and
the  associations  between  aortic  areas  and  other  subclinical
CVDs were independent of CAC presence or severity in this
cohort.  This  anatomic  specificity  is  likely  related  to  the
functional similarities between arteries; specifically, the aorta
is  more  similar  in  function  and  structure  to  the  carotid  and
other  systemic  arteries  tasked  with  transporting  oxygenated
blood throughout the body, compared to the focused purpose of

the coronary artery, which is to deliver oxygenated blood to the
cardiac  muscle  [37].  However,  another  recent  study  in  a
European  population-based  cohort  suggested  an  association
between a very high CAC score and a larger aortic size [31].
This  may  suggest  population  specificity  to  the  associations;
nonetheless, these data provide a theoretical framework that it
may be possible to assess whole-body subclinical CVD burden
from a single cardiac CT in individuals who are at high risk for
incident  CVD,  e.g.,  populations  with  a  high  burden  of
hypertension.

CONCLUSION

In this  study,  we have developed a novel  method for the
measurement of aortic area across the length of the artery from
archived  CT  images.  We  found  that  not  only  were  these
measurements  in  correlation  with  each  other  and  with  other
arterial  sizes,  they  were  associated  with  aging,  high  blood
pressure, and greater body size, as other studies performed in
White participants  have reported [8,  22].  Notably,  this  is  the
first study to measure the aortic size in conjunction with other
indices  of  subclinical  CVD,  and  we  demonstrate  that  aortic
area is  independently correlated with a variety of  subclinical
disease  measures  throughout  the  body.  Of  course,  further
studies  are  needed  to  optimize  the  protocol  for  aortic
measurement from CT as standardization has been shown to be
important in reading CT aortic dimensions [38, 39], especially
as  a  number  of  artificial  intelligence  methods  for  reading
clinical  imaging  scans  are  under  development  [40,  41].
Additionally,  studies  are  needed  to  extend  these  findings  in
additional ethnicities and women, and to longitudinally assess
the  ability  of  the  aortic  area  to  predict  future  cardiovascular
events. While there is, of course, some risk associated with CT
scanning,  primarily  from radiation  exposure  [42],  the  risk  is
minimal,  and  we  propose  that  further  studies  should  be
conducted  to  determine  if  simply  measuring  the  descending
aortic  area,  in  addition  to  the  regularly  measured  proximal
aortic  area,  on  clinically  indicated  cardiac  CTs  may  have
additional  utility  for  clinical  interpretation  and  risk
stratification  as  has  recently  been  suggested  in  aneurysm
screening  [43]  and  coronary  angiography  [44]  populations.
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